

Amiga
Machine Language

Dittrich

Abacus
A Data Becker Book

Sixth Printing, 1991
Printed in U.S.A.
Copyright © 1988, 1989, 1990
1991

Abacus Software, Inc.
5370 52nd Street SE
Grand Rapids, MI 49512

Copyright © 1987, 1988, 1989, 1990 Data Becker, GmbH
1991 MerowingerstraI3e 30

4000 Deusseldorf, Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of Abacus Software or Data
Becker, GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus Software can neither guarantee nor be
held legally responsible for any mistakes in printing or faulty instructions contained in this
book. The authors always appreciate receiving notice of any errors or misprints.

AmigaBASIC and MS-DOS are trademarks or registered trademarks of Microsoft
Corporation. Amiga 500, Amiga 1000, Amiga 2000, Amiga, Graphicraft, Musicraft,
Sidecar and Textcraft are trademarks or registered trademarks of Commodore-Amiga Inc.
Seka assembler is a registered trademark of Kuma COIporation.

Dittrich, Stefan. 1959-
Amiga Machine Language / Dittrich.

p. cm.
"A Data Becker book."
ISBN 1-55755-025-5 : $19.95
1. Amiga (Computer) - Programming. 2. Assembler language (Computer

program language) 3. Motorola 68000 (Microprocessor) - - Programming.
I Title.
QA76.8.A177D58 1989 89-18497
005.265--dc20 CIP

Table of Contents
1. Introduction ... 1
1.1 Why machine language? ... 3
1.2 A look into the Amiga's memory .. .4
1.2.1 RAM, ROM, hardware register ... 4
1.2.2 Bits, bytes, and words ... 5
1.2.3 Number systems .. 6
1.3 Inside the Amiga ... 8
1.3.1 Components and libraries ... 9
1.3.2 Memory ... 10
1.3.3 Multi-tasking .. 11

2. The MC68000 processor .. 13
2.1 Registers ... 15
2.2 Addressing memory ... 18
2.3 Operating modes ... 25
2.3.1 User and supervisor modes ... 25
2.3.2 Exceptions .. 26
2.3.3 Interrupts .. 29
2.3.4 Condition codes ... 30
2.4 The 68000 Instructions ... 34

3. Working with Assemblers .. 45
3.1 The Development Assember .. 48
3.2 AssemPro .. 50
3.3 The K-SEKA Assembler ... 53

4. Our First Programs ... 61
4.1 Adding tables .. 63
4.2 Sorting a table .. 66
4.3 Converting numbering systems .. 70
4.3.1 Converting hex to ASCII ... 70
4.3.2 Converting decimal to ASCII ... 73
4.3.3 Converting ASCII to hex ... 75
4.3.4 Converting ASCII to decimal ... 78

5. Hardware Registers ... 81
5.1 Checking for special keys ... 83
5.2 Timing .. 85
5.3 Reading the mouse or joystick ... 86
5.4 Tone production .. 90
5.5 Hardware registers overview ... 96

6. The Amiga Operating System ... 99
6.1 Load libraries .. .101
6.2 Calling functions ... 103
6.3 Program initialization ... 105
6.3.1 Reserve memory .. .105

6.3.2 Opening a simple window ... 106
6.4 Input/Output ... 112
6.4.1 Screenoutput ... 112
6.4.2 Keyboard input ... 122
6.4.3 Printer control .. 127
6.4.4 Serial I/O ... 128
6.4.5 Speech output ... 128
6.5 Disk operations139
6.5.1 Open files .. 139
6.5.2 Reading and writing data .. .140
6.5.3 Erase files .. 142
6.5.4. Rename files .. 143
6.5.5 eLI directory ... 143
6.5.6 Readdirectory .. .146
6.5.7 Direct access to disk ... 152

7. Working with Intuition .. 161
7.1 Open screen ... 165
7.2 Open window .. 174
7.3 Requesters ... 179
7.4 Event handling ... 182
7.5 Menu programming .. 184
7.6 Text output ... 197
7.7 Images ... 199
7.8 Borders ... 202
7.9 Gadgets .. 205
7.9.1 Boolean gadgets .. 205
7.9.2 String gadgets .. .211
7.9.3 Proportional gadgets .. 216
7.10 Example program219

8. Advanced Programming .. 229
8.1 Supervisor mode .. 231
8.2 Exception programming .. 233

Appendix ... 237
Overview of Library functions ... 239
Overview of the MC68000 Instructions .. .248

Index ... 251

Preface

Machine language is the native language of the Amiga and allows the
programmer to take complete advantage of the Amiga's capabilities and
speed.

Programming the Amiga in machine language requires knowledge of the
MC68000 processor and the internal characteristics of the Amiga. The
large number of functions offered by the Amiga's operating system
should be accessible and usable by the machine language programmer.

Accessing the Amiga's operating system has been difficult for the
machine language programmer. The Amiga's documentation is written for
the C-programmer, and is not much help to the machine language pro­
grammer. In this book we will introduce you to the Amiga's processor,
the operating system and how to access them using machine language.

First we'll take a look at memory organization and the basic operations of
the computer. Next we'll take a more detailed look inside the Amiga and
its 68000 processor. Sample programs will allow you to program the
Amiga's 68000 processor while learning about it.

After the tour of the 68000 processor we'll show you how you can create
windows and menus. The sample programs will allow you to build a
library of machine language routines. You can use these routines to create
fast, user friendly, professional programs.

We hope you'll enjoy applying the knowledge you will soon gain from
this book in your own programs and experiments.

Stefan Dittrich Gummersbach April 1987

Chapter 1

Introduction

Abacus 1. Introduction

1. Introduction

Before you tackle machine language, you should take a closer look at
several things that are vital to machine language programming.

1 . 1 Why machine language?

Advantages

Machine language is actually the only language the MC68000 processor
understands. All other languages, such as BASIC, Pascal or C, must fust
be translated (interpreted or compiled) into machine code. This process can
take place either when the program is executed (the BASIC interpreter), or
before program execution (the Pascal and C compilers).

The great advantage of machine language over an interpreted and compiled
program is machine language programs are faster. With an interpreter like
BASIC, each line must first be interpreted before it is executed, which
requires a great deal of time. A Pascal or C compiler translates the source
code into machine language. This translation procedure does not produce
programs that are as fast as a pure machine language program.

Another advantage machine language has over BASIC is that an inter­
preter is not needed for the execution of a machine language program.

Machine language can access all the capabilities of the computer since it
is the language native to the computer. It is possible that machine
language subroutines are required by a higher level language to access
functions that aren't directly accessible by that language.

3

1. Introduction Amiga Machine Language

1 .2 A look into the Amiga's memory

1.2.1

ROAI

PROAl

EEROM

4

Before a machine language program can be written, you must know
exactly what the program is required to do. You must also be aware of
what resources are needed and available to achieve those goals. The most
important of these resources is the memory in the Amiga.

RAM, ROM, hardware register

Random Access Memory, referred to as RAM, allows information to be
placed in it and then withdrawn at a later time. This memory consists of
electronic components that retain data only while the computer is turned
on (or until a power-failure).

So that the computer is able to do something when it is first turned on,
such as prompting for the WorkBench or Kickstart disk, a program has to
remain in memory when the power is off. A memory type which can
retain data without power is needed. This second memory type is known
as ROM.

ROM stands for Read Only Memory, indicating that data can only be read
from this memory, not written to it. The Amiga contains a ROM, that
loads the Workbench or Kickstart disk into RM1. The first version of the
Amiga did not contain the Kickstart in ROM.

One variation of ROM is the PROM, or Programmable Read Only
Memory. This special type of ROM can actually be programmed once.
Since it cannot be erased once programmed, it isn't encountered very of­
ten. More often you'll see EPROM's, or Erasable Programmable ROM's.
These special chips, which can be erased with ultraviolet light, have a
little window on the surface of the chip usually covered by tape.

Although not available on the consumer market and much more expen­
sive than RAM, the EEROM (Electrically Erasable ROM) offers another
alternative to programmable ROM. These chips function like RAM,
except that information is not lost when the power is turned off.

Abacus

WOM

Registers

1.2.2

Kilobyte

Byte

1. Introduction

With the birth of the Amiga, another type of memory, WOM, was
created. This particular type of memory is Write Once Memory. The
Kickstart disk is read into this memory when the computer is first booted.
After this, no more data can be read into that memory. Actually this isn't
a completely new component, but simply RAM that is locked once data
has been read into it, after which the data can only be read from that
memory.

In addition to RAM and these variations of ROM there is another type of
memory situated between those two groups. This memory is connected to
the processor through a group of peripheral controllers. Thus it is com­
monly referred to as the hardware register, since the computer's hardware
is managed by this system. We'll go into greater detail on how to use
these hardware registers later in this book.

Let's take a closer look at the structure and use of the memory most
familiar to us all, RAM.

Bits, bytes, and words

The standard size in which memory is measured is a kilobyte (Kbyte).
One kilobyte consists of 1024 bytes, not 1000 as you might expect. This
unusual system stems from the computer's binary mode of operation,
where numbers are given as powers of 2, including kilobytes.

To access a memory block of one kilobyte, the processor requires 10
connections which carry either one volt or zero volts. Thus 2"10=1024
combinations or 1024 bytes of memory, are possible.

A byte, in tum, consists of yes/no, on/off information as well. A byte
can be one of 2"8 different values, and thus it can represent anyone of
256 numbers. The individual numerical values that make up a byte,
which also are the smallest and most basic unit encountered in any com­
puter, are called bits (short for binary coded digit).

A 512 Kbyte memory, such as the Amiga's, contains 2"19=524288 bytes
and 4194304 bits. It may seem unimaginable, but a memory of that size
has 2"4194300 different combinations.

5

1. Introduction Amiga Machine Language

Word

1.2.3

Binary

6

Back to the basics ... bits and bytes are sufficient to program an eight bit
processor like the 6500, since it can work only with bytes. To program a
16/32 bit processor like the Amiga's MC68000, you'll need to know two
new data forms: words, consisting of 16 bits (the equivalent of two
bytes), and long words, which are 32 bits (the equivalent of 4 bytes or 2
words).

A word can be any number between 0 and 65536, a long word can be 0 to
4294967295. The MC68000 processor can process these gigantic num­
bers with a single operation.

Once in a while you need to use negative numbers as well as positive
ones. Since a bit can only be lor 0 and not -I, an alternate system has
been adopted. If a word is to have a specific sign, the highest value digit
or 15th bit in the word (positions are always counted from zero) deter­
mines the sign of the word. With this method words can carry values
from -32768 to +32768. One byte can range from -127 to +127. In a
byte, the value -1 is given by $FF; in a word it's $FFFF, -2 is $FE
($FFFE), etc.

Let's stick with positive values for the time being, to aid in the visual­
ization of a bit in relation to its bit-pattern. Machine language does not
use the familiar decimal system. Instead, it commonly employs the
binary as well as the octal and hexadecimal number systems.

Number systems

Let's take a look at the decimal system: its base number is 10. This
means that every digit represents a power of 10. This means that the 246
represents 2*10"2+4*10"1+6*10"0. The decimal system offers a selection
of 10 characters, namely 0 to 9.

This procedure is different for the binary system. The binary system offers
only two different characters: 1 and O. Thus the system's base number is
two. The decimal value of 1010 would therefore be:

Generally binary numbers are identified by having a percentage symbol as
a prefix. See if you can determine the decimal value of this number:
%110010 ...

Abacus

Octal

Hex

1. Introduction

Well, did you get 50? That's the right answer. The most simple method
to arrive at this result is to simply add up the values of the digits that
contained a 1. The values of the first eight digits are as follows:

digit
value

8
128

7

64

6
32

5

16
4

8
3
4

2

2
1

1

The octal system, whose base is eight, is similar. The character set
consists of the numbers 0 to 7. The decimal equivalent of the octal num­
ber 31 is: 3*8 111+1*8"0=25. However, the octal system isn't nearly as
important as the next one ...

The base number of the hexadecimal system is 16, and its character set
ranges from 0 to F. Thus, A would be the equivalent of a decimal 10, and
F would be 15. The dollar sign ($) indicates a hexadecimal number. The
binary and hexadecimal systems are the most important numerical sys­
tems for assembly language programming.

The hexadecimal representation of a byte ranging from 0 to 256 always
has two digits: $00 to $FF. A word ranges from $0000 to $FFFF and a
long word from $00000000 to $FFFFFFFF.

It is quite easy to convert binary numbers into hexadecimal: simply split
up the binary number into groups of four digits. Each of these groups of
four digits then corresponds to one hexadecimal digit. Here's an example:

binary number
split up
result
thus:

%11001 101111
%1100 %1110 %1111
$C $E $F
%110011101111 ~ $CEF

The opposite operation is just as easy ...

hexadecimal
split up
result
thus:

$E300
$E $3 $0 $0
%1110 %0011 %0000 %1101
$E300~%1110001100001101

This method can also be used to convert binary into octal and vice versa,
except that groups of three digits are used in that case.

octal number
split up
result

thus:

7531
753 1
%111 %100 %011 %001
octal 7531~%111101011001

This binary number can then be converted into hexadecimal, as well:

7

1. Introduction Amiga Machine Language

8

binary number %111101011001
split up %1111 0101 1001
result $F $5 $9
thus: octal 7531 = $F59

The following calculation can then be used to convert the number into the
familiar decimal system:

hexadecimal
split up
result
thus:

$F59
$F $5 $9
15*16~2 +5*16 +9
$F59 = 3929 decimal

Although these conversions are quite simple, they can get to be rather
annoying. Many assemblers can ease this task somewhat: they allow you
to enter a value with '?' upon which it returns the value in decimal and
hexadecimal forms. There are even calculators that perform number base
conversions.

Often this conversion has to be performed in a program, for instance
when a number is entered by the user and then processed by the computer.
In this case the number entered, being simply a combination of graphic
symbols, is evaluated and then usually converted into a binary number, in
effect, a word or a long word.

This process is often required in reverse order, as well. If the computer is
to display a calculated value in a specific number system, it must first
convert that number into a series of characters. In a later chapter you will
develop machine language routines to solve these problems. You can then
use these routines in your own programs. First you still have to cover
some things that are fundamental to machine language programming on
the Amiga.

Abacus 1. Introduction

1 .3 Inside the Amiga

1 .3. 1

In order to program machine language, it is not sufficient to know only
the commands of the particular processor, one must also have extensive
knowledge of the computer being programmed. Let's take a good look
inside the Amiga.

Components and libraries

The Amiga is a very capable machine, due to the fact that there are
components that do a large part of the workload, freeing up the 68000
processor. These are referred to as the "custom" chips, which perform
various tasks independently of the 68000 processor.

Custom chips This task force is comprised of three chips, whose poetic names are
Agnus, Denise and Paula. The main task of Agnus, alias blitter, is the
shifting of memory blocks, which is helpful for operations such as quick
screen changes. Denise is responsible for transferring the computer's
thoughts onto the screen. Paula's tasks consist of input/output jobs, such
as disk operation or sound.

These chips are accessed by the processor through several addresses
starting at $DFFOOO, which are also known as the hardware registers
(you'll find more detailed information about the registers in the corres­
ponding chapter). To simplify the otherwise rather complicated procedure
of utilizing these chips, several programs have been included in the Kick­
start and Workbench libraries. These programs can be called by simple
routines and then take over the operation of the respective chips.

If only these library functions are used to program the Amiga, the para­
meters are the same, regardless of the language used. Only the parameter
notation differs from language to language. BASIC is an exception in this
respect, since its interpreter translates the program calls, which is why
you don't need to know how the Amiga executes these functions in order
to use them.

The library functions are written in machine language and are thus closely
related with your own machine language programs. Actually you could do
without the library programs and write all of the functions yourself.

9

1. Introduction Amiga Machine Language

1.3.2

Chip RAM

Fast RAM

10

However, the incredible workload of this task is so discouraging, that
you'd rather stick with the library functions.

Memory

First let's look at the RAM of the Amiga 1000. The standard version of
this computer has over 512 Kbytes of RAM, ranging from the address
$00000 to $7FFFF, or 0 to 524287. If the memory is expanded to one
megabyte, the flrst 512K still starts at address $000000 however the start
of anything greater than S12K can go anywhere in the address space
between $200000 to $9FFFFF. With the release of AmigaDOS 1.2, the
Amiga figures out where to put memory expansion by using a special
'Autoconfig' scheme. This allows you to add memory and 110 without
worrying about addresses and dip switches.

The chips that support the Amiga's processor access RAM almost totally
independently and thus ease the workload of the processor. However, there
is a drawback: these chips can only access the first S12K bytes of RAM.
Thus, graphics and sound data handled by these chips must be stored in
this memory range. Because of this, that memory range is referred to as
chip RAM.

The counterpart to chip RAM is the remaining RAM which, if the com­
puter is equipped with it, begins at $200000. Since only the processor
itself has access to this part of memory it is known as fast RAM.

Here's an overview of the Amiga's memory:

$OOOOOO-$07FFFF
$OBOOOO-$lFFFFF
$200000-$9FFFFF
$AOOOOO-$BEFFFF
$BFDOOO-$BFDFOO
$BFE001-$BFEFOO
$COOOOO-$DFEFFF
$DFFOOO-$DFFFFF
$EOOOOO-$E7FFFF
$EBOOOO-$EFFFFF
$FOOOOO-$F7FFFF
$FBOOOO-$FFFFFF

chip RAM
reserved
potential fast-RAM
reserved
PIA B (even addresses)
PIA C (odd addresses)
reserved for expansion
custom chip registers
reserved
expansion ports
reserved
system ROM

Since the Amiga is multi-tasking, when a program is loaded into mem­
ory, it is simply loaded into any memory location. The memory range
thus occupied is added to a list of occupied memory and the memory range
is then considered barred from other uses. If another program is loaded,
which is quite possible with the Amiga, it is read into another memory

Abacus

1.3.3

1. Introduction

location which is then marked on the occupied list. If the first program
should require additional memory, to use a text buffer for example, that
memory first has to be reserved. Otherwise another program could acci­
dentally be loaded into the memory needed for this task.

What's interesting about this procedure is that when the first program
loaded has ended, the memory occupied by it is freed for further use. As a
result, RAM is then chopped up into occupied and free parts, which are
no longer related to each other. The Amiga can still utilize these chunks
of memory as if they were one continuous chunk. After all, parts is parts.
An example of this is the dynamic RAM disk which is always available
under the name RAM:.

This RAM disk is actually quite a phenomenon, since it is always
completely filled. If a program is erased from RAM disk, the memory
allocated to that program, regardless of its location and structure, is given
back to the system. Thus, if you reserve and fill 100 Kbytes of memory,
it would be quite possible that the 100 Kbytes actually consist of various
pieces of memory independent of one another. You never notice this since
the Amiga automatically corrects the difference between apparent and
actual memory.

Multi-tasking

The Amiga is truly an amazing machine, being capable of doing several
things at one time. A red and white ball might be bouncing around in one
window while you're working on text in another window and watching a
clock tick away in a third.

At least that's the impression most people get when they receive their
first Amiga demonstration. However, there is a catch to this: even the
Amiga has only one processor, which can really only do one thing at a
time.

The tricky part is when more than one program is running, each program
is executed part by part, and the Amiga is constantly switching from one
program back to the other program. In the example above, the ball would
first be moved by one pixel, then the processor would check for a text
entry and if necessary display it, after which it would move the clock's
second hand. This procedure would be repeated over and over, as the three
programs are executed together. The problem is, that the greater the work­
load on the processor, the slower things happen. Thus, programs run
slower during heavy multi-tasking.

11

1. Introduction Amlga Machine Language

Tasks Each of these jobs that the Amiga has to execute are commonly referred
to as tasks ... thus, multi-tasking. During multi-tasking, each task is
assigned a special time segment during which that particular task is
executed. These time segments can be controlled, so that more time­
consuming programs can be allotted somewhat more processing time.

The programmer actually doesn't need to know how this time slicing
works. You can write a program without paying any attention to multi­
tasking and then run it simultaneously with another program running in
the background. The only restriction is that you'll have to start the
program either from the eLI with 'run', or from the Workbench. If you
execute the program from the eLI by simply typing its name, the pro­
cessor allots all the time it can get from the eLI to that program, until
the execution is complete. Starting the program with 'run' frees the eLI
for other uses while the program is being executed.

There is another restriction regarding multi-tasking that applies to assem­
bler programmers. Aside from the use of extra memory, which must first
be reserved, the hardware registers should not be directly accessed. Instead,
the library functions should be used. The reason for this is quite simple:

Should you, for instance, specify the printer port as the input line and are
reading data in, another task might suddenly think it's supposed to be
printing. The line would thus be switched to output and data would be
written out. After this, your program would try to read more data in,
which would not be possible.

This is an oversimplified example, but it points out the problem never­
theless. In real programming situations the effects of multiple direct
programming of the hardware registers can be much more catastrophic. If
your program still needs to access the hardware registers directly (which
can have some advantages), then make sure that the program always runs
by itself.

12

Chapter 2

The MC68000
processor

Abacus 2. The MC68000 Processor

2. The MC68000 processor

7.1 megaherz

The Amiga's MC68000 processor is a 16/32 bit processor, which means
that while it can process data of 32 bits, it "only" has a 16 bit data bus
and a 24 bit address bus. Thus, it can access 2"24=16777216 bytes (or 16
Mbytes) of memory directly.

The Amiga 68000 processor, running at 7.1 megaherz, is quite fast,
which is required for a computer with a workload as heavy as the
Amiga's. The Amiga also possesses a number of custom chips that great­
ly ease the workload of the processor. These custom chips manage sound,
in/output, graphics and animation, thus freeing the processor for calcula­
tions.

2.1 Reg isters

In addition to the standard RAM, the processor contains internal memory
called registers There are eight data registers (DO-D7), eight address
registers (AO-A7), a status register (SR), two stack pointers, a user stack
pointer, a system stack pointer (USP and SSP) and the program counter
(PC).

Register Sizes The data registers, the address registers, and the program counter are all 32
bits, while the status register is 16 bits. These registers are located
directly in the processor so they aren't accessed the same way memory
would be accessed. There are special instructions for accessing these
registers.

Data Registers The data registers are used for all kinds of data. They can handle opera­
tions with bytes (8 bits), words (16 bits) and long words (32 bits).

Address The address registers are used for storing and processing addresses. This
Registers way they can be used as pointers to tables, in which case only word and

long word operations are possible.

15

2. The MC68000 Processor Amlga Machine Language

Stack pointer The address register A7 plays a special role: this register is utilized as the
Stack Pointer (SP) by the processor, and thus is not recommended for
normal use by the programmer. Which of the two possible stacks is
being pointed to depends on the present mode of the processor, but more
about that later.

This stack, to whose actual position the stack pointer is pointing, is used
to store temporary internal data. The stack works similar to a stack of
notes on your desk: the note that was added to the stack last is the flrst
one to come off of the stack. This type of stack is known as LIFO (Last
In, First Out). There is another type of stack, the FIFO (First In, First
Out) which is not used by the processor itself.

How these registers and the SP can be manipulated, or how to work with
the stack, is presented in the next chapter. Let's continue with the regis­
ters for now.

Status Register The Status Register (SR) plays an important role in machine language
programming. This 16-bit quanity (word) contains important information
about the processor status in 10 of its bits. The word is divided into two
bytes, the lower byte (the user byte) and the upper byte (the system byte).
The bits that signify that certain conditions are referred to as flags. This
means that when a certain condition is present, a particular bit is set.

16

The user byte contains flve flags, which have the following meanings:

Bit Name
o (C, Carry)

1 (V, Overflow)

2 (Z, Zero)

3 (N, Negative)

4 (X, Extended)
5-7

Meaning
Carry bit, modified by math calculations, and
shift instructions.
Similar to carry, indicates a change of sign, in
other words, a carry from bit six to bit seven.
Bit is set when the result of an operation is
zero.
Is set when the result of an operation is nega­
tive.
Like carry, is set for arithmetic operations,
not used

Abacus 2. The MC68000 Processor

The system byte contains five significant bits:

Bit Name
8 IO
9 11
10 I2
11
12
13 (S, Supervisor)

14

Meaning
Interrupt mask. Activates interrupt levels
o to 7, where 0 is the lowest and 7 is the
highest priority.
not used
not used
This bit indicates the actual processor mode
(D=User, I=Supervisor mode).
not used

15 (T, Trace) If this bit is set, the processor isin single step
mode.

Here's an overview of the status word:

bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
name: T - s - - 12 11 10 - X N Z V C

Don't let the new terms, like mode and interrupt confuse you. We'll talk
about these in greater detail in the chapter dealing with the operating
conditions of the processor.

17

2. The MC68000 Processor Amiga Machine Language

2 . 2 Addressing memory

18

In the standard Amiga 500's and 1000's the processor has over 512
Kbytes of RAM available. The Amiga 2000 has one megabyte of RAM
that can be accessed by the processor. How does the processor access all
this memory?

If you're programming in BASIC you don't have to worry about memory
management. You can simply enter MARKER%=I, and the value is
stored in memory by the BASIC interpreter.

In assembler, there are two ways of accomplishing this task:

1) Store the value in one of the data or address registers, or

2) Write it directly into a memory location.

To demonstrate these two methods let's get a little ahead and introduce a
machine language instruction, which is probably the most common:
MOVE. As its name states, this instruction moves values. Two parameters
are required with the instruction: source and destination.

Let's see what the example from above would look like if you utilize the
MOVE instruction ...

1) MOVE #1,DO

This instruction moves the value 1 into data register DO. As you can see,
the source value is always entered before the destination. Thus, the in­
struction MOVE DO,n is not possible.

2) MOVE #1,$1000

deposits the value 1 in the memory location at $1000. This address was
arbitrarily chosen. Usually addresses of this form won't be used at all in
assembler programs, since labels that point to a certain address are used
instead. Thus, the more common way of writing this would be:

MOVE #1,MARKER

MARKER:DC.W 1

Abacus

Caution:

2. The MC68000 Processor

These are actually two pieces of a program: the first part executes the
normal MOVE instruction whose destination is 'MARKER'. This label is
usually defined at the end of the program and specifies the address at
which the value is stored.

The parameter DC.W 1 is a pseudo-op, a pseudo operation. This means
that this isn't an instruction for the processor, but an instruction for the
assembler. The letters DC stand for 'DeClare' and the suffix .W indicates
that the data is a Word. The other two suffix alternatives would be .B for
a Byte (8 bits) and .L for a Long word (32 bits).

This suffix (.B .W or .L) is used with most machine language instruc­
tions. If the suffix is omitted, the assembler uses .W (word) as the default
parameter. If you wanted to use a long word, you'd use an instruction that
looks something like this: MOVE.L * $12 3 4 5678,D 0 whereas an
instruction like MOVE.B * $12,D 0 would be used for a byte of data.
However, with this instruction there's one thing you must be aware of...

If the memory is accessed by words or long words, the address must be
even (end digit must be 0,2,4,6,8,A,C,E)!

Assemblers usually have apseudo-op, 'EVEN' or 'ALIGN', depending on
the assembler, that aligns data to an even address. This becomes necessary
in situations similar to this:

VALUE1:

VALUE2:

DC.B 1

DC.W 1

If the VALUE 1 is located at an even address, VALUE2 is automatically
located at an odd one. If an ALIGN (EVEN) is inserted here, a fill byte (0)
is inserted by the assembler, thus making the second address even.

VALUE1:
ALIGN

VALUE2:

DC.B 1

DC.W 1

Back to the different ways of addressing. The variations listed above are
equivalent to the BASIC instruction MARKER%=l where the % symbol
indicates an integer value.

Let's go a step further and translate the BASIC instruction
MARKER%=VALUE% into assembler. You've probably already guessed the
answer, right?

19

2. The MC68000 Processor Amlga Machine Language

20

MOVE VALUE,MARKER

MARKER:
VALUE:

DC.W 1
DC.W 1

In this case, the contents in the address at VALUE are moved into the
address at MARKER.

With the help of these simple examples, you've already become familiar
with four different ways of addressing, in other words, ways that the
processor can access memory. The first is characterized by the number
sign (#) and represents a direct value. Thus, this method is also known as
di.rect addressing, and is legal only for the source parameter!

A further method in which a direct address (in our ca<;e, 'MARKER' and
'VALUE') can be specified, is known as absolute addressing. This method
is legal for the source parameter as well as for the destination parameter.

This method can be divided into two different types, between which the
programmer usually doesn't notice a difference. Depending on whether the
absolute address is smaller or larger than $FFFF, in other words if it
requires a long word, it is called absolute long addressing (for addresses
above $FFFF) or otherwise absolute short addressing. The assembler
generally makes the distinction between these two types, and thus only
general knowledge of absolute addressing is required.

The fourth method of addressing that you've encountered so far is known
as data register direct. It was the first one introduced (MOVE # 1,D 0) in
conjunction with direct addressing, the only difference being that this type
accesses a data register (such as DO).

These four methods aren't the only ones available to the 68000 processor,
in fact there are a total of 12. One other variation called address register
direct, is almost identical to data register direct, except that it accesses the
address register instead of the data register. Thus, you can use MOVE.L

#MARKER,AO to access address register AO directly.

You now know of five ways to address memory with which quite a bit
can be accomplished. Now, let's tackle something more complicated and
more interesting.

Let's take another example from BASIC:

10 A=1000
20 POKE A,l

Abacus 2. The MC68000 Processor

In this example the first line assigns the value 1000 to the variable A.
This can be done in assembler as well: MOVE.L #lOOO,AO. In the as­
sembler version the absolute value of 1000 is stored in the address register
AO.

Line 20 doesn't assign a value to the variable A itself, but rather to the
memory location at the address stored in A. This is an indirect access,
which is quite easy to duplicate in assembler:

MOVE.L #lOOO,AO
MOVE #l,{AO)

;bring address in AO
;write 1 into this address

The parentheses indicate an addressing method known as address register
indirect. This method works only with address registers, since a 'data
register indirect' does not exist.

There are several variations of this method. For instance, a distance value
can be specified, which is added to the address presently located in the
address register before the register is actually accessed. The instruction
MOVE H,4 (AO), if applied to the example above, writes the value 1
into the memory cell at 1000+4=1004. This distance value can be 16 bits
long and can be positive or negative. Thus, values from -32768 to
+32768 are accepted. This specillc variation of addressing is called address
register indirect with a 16 bit displacement value.

There is another very similar variation: address register indirect with an 8
bit index value. While this variation is limited to 8 bits, it also brings
another register into play. This second register is also a distance value,
except that it is a variable, as well.

We'll try to clarify this with an example. Let's assume that a program
includes a data list that is structured like this:

RECORD: DC.W 2 ;number of entries-1
DC.W 1,2,3 ;elements of list

We'll use MOVE.L #RECORD,AO to load the list into the address register
AO. Then you can use MOVE (AO) ,D 0 to pull the number of elements in
the list into the data register. To access the last element of the list only
one instruction is needed. The whole thing looks something like this:

CLR.L DO
MOVE.L #RECORD,AO
MOVE {AO),DO
MOVE 1 (AO,DO) ,01

RECORD: DC.W 2
DC.W 1,2,3

;erase DO completely
;address of list in AO
;number of elements-1 in DO
;last element in 01

;number of entries-1
;elements of list

21

2. The MC68000 Processor Amlga Machine Language

22

This last instruction accesses the byte that is located at I+AO+DO, in
other words, the record + 1 where the data begins plus the contents of DO
(in this case 2).

This method of accessing is very useful. It works exquisitely for the
processing of tables and lists, as the example demonstrates. If no distance
value is needed, simply use a distance value of zero, which some assem­
blers automatically insert as the default value if, for instance, only MOVE

(AO,DO) is entered.

The latter two methods have a third variation, which has its own charac­
teristic trait. It doesn't utilize an address register, but uses the Program
Counter (PC) instead. The program counter with displacement method
proves useful when a program must function without any changes in all
address ranges. The following two statements (in the 15 bit limits) have
the same effect

MOVE MARKER,DO

MOVE MARKER (PC) ,DO

This method is actually rather imprecise, since the fIrst instruction spec­
ifIes the actual address of the marker with MARKER, while the second line
specifIes the distance between the instruction and the marker. However,
since it would be quite cumbersome to constantly calculate the distance,
the assembler takes this task off our hands and calculates the actual value
automatic all y.

Let's examine the difference between the two instructions. In a program
they'll accomplish the same thing, although they are interpreted as two
completely different things by the assembler. You'll assume a program
begins at the address $1000 and the marker is located at $1100. The
generated program code then looks something like this:

$001000 303900001100 MOVE MARKER,D1

$001000 303AOOFE MOVE MARKER (PC) ,D1

As you can see, the generated code of the second line is two bytes shorter
than the fIrst line. In addition, if you were to shift this code to the address
$2000, the fIrst version still accesses memory at $1100, while the second
line using the PC indirect addressing accesses memory at $2100 correctly.
Thus, the program can be transferred to almost any location.

Abacus 2. The M C68000 Processor

This, then, is program counter with 16 bit diplacement value. As we
mentioned, there is also program counter with an 8 bit index value, which
permits a second register as a distance value, also known as an offset.

There are two more addressing modes left. These two are based on indirect
addressing. They offer the capability of automatically raising or lowering
the address register by one when memory is accessed with address register
indirect

To automatically increase the register, you'd use address register indirect
with post-increment. The address register raises this by the number of
bytes used AFTER accessing memory. Thus, if you write

MOVE.L #lOOO,AO
MOVE.B #1,(AO) +

the 1 is written in the address 1000 and then AO is raised by one. Instruc­
tions like this are very helpful when a memory range is to be filled with a
specific value (for instance when the screen is cleared). For such purposes
the instruction can be placed in a loop ... which we'll get to later.

The counterpart to post-increment is address register indirect with pre­
decrement. In this case the specified address register is lowered by one
BEFORE the access to memory. The instructions

MOVE.L #lOOO,AO
MOVE.B #l,- (AD)

writes 1 in the address 999, since the content of AO is first decremented
and the 1 is written afterwards.

These two methods of addressing are used to manage the Stack Pointer
(SP). Since the stack is filled from top to bottom, the following is
written to place a word (s.a. DO) on the stack:

MOVE.B DO,- (SP)

and to remove it from the stack, again in DO:

MOVE.B (SP) +,DO

This way the stack pointer always points to the byte last deposited on the
stack. Here, again, you'll have to be careful that an access to the stack
with a word or a long word is always on an even address. Thus, if you're
going to deposit a byte on the stack, either use a whole word or make
sure that the byte is not followed by a JSR or BSR. The JSR or BSR
instructions deposit the addresses from which they stem on the stack in
the form of a long word.

23

2. The MC68000 Processor Amlga Machine Language

24

In the code above, the SP is generally replaced by the address register A7
in the program code, since this register is always used as the SP. Thus,
you can write A 7 as well as SP, the resulting program is the same. How­
ever, we recommend the use of SP, since this makes the code somewhat
easier to read. After all, quite often you'll want to employ your own
stacks, in which case the difference between the processor stack and your
own stacks become very important

These are the 12 ways of addressing the MC68000 processor. Here's a
summary:

No. Name Format
1 data register direct On
2 address register direct An
3 address register indirect (An)
4 address register indirect with post-increment (An)+
5 address register indirect with pre-decrement -(An)
6 address register indirect with 16 bit displacement dl6(An)
7 address register indirect with 8 bit index value 8(An,Rn)
8 absolute short xxxx.W
9 absolute long xxxxxxxx.L
10 direct #'data'
11 program counter indirect with 16 bit displacement d16(PC)
12 program counter indirect with 8 bit index value d8(PC,Rn)

The abbreviations used above have the following meanings:

An address registers AO-A 7
On data registers DO-D7
d16 16 bit value
d8 8 bit value
Rn registerDO-D7, AO-A7
'data' up to a 32 bit value, (either .B .W or .L)

These are the addressing modes used by the 68000 processor. The bigger
brother of this processor, the 32 bit MC68020, has six more methods
which we won't discuss here.

Next, you're going to see under what conditions the processor can
operate.

Abacus 2. The MC68000 Processor

2 . 3 Operating modes

2.3.1

In the previous section about registers you encountered the Status
Register (SR). The individual bits of this register reflect the present
operating condition of the processor. You differentiated between the
system byte (bits 8-15) and the user byte (bits 0-7). Now, let's take a
closer look at the system byte and its effects upon the operation of the
processor.

User and supervisor modes

Isn't is rather strange that the processor classifies you either as a 'user' or
a 'supervisor'? Both of these operating modes are possible, the user mode
being the more common mode. In this mode it is impossible to issue
some instructions, and that in your own computer!

Don't worry, though, you can get around that, as well. The Amiga's
operating system contains a function that allows us to switch the
processor from one mode to the other.

The mode is determined by bit 13 of the status register. Usually this bit
is cleared (0), indicating that the processor is in user mode. It is possible
to write directly into the status register, although this is a privileged
instruction that can only be executed from the supervisor mode. Thus,
this instruction could only be used to switch from the supervisor mode
into the user mode, by using AND # $DFFF ,SR to clear the supervisor
bit. However, it is quite preferable to let the operating system perform the
switch between these two modes.

Now what differentiates these two modes in terms of their application?

Well, we already mentioned the first difference: some instructions, such as
MOVE xX,SR, are privileged and can only be executed from the supervisor
mode. An attempt to do this in the user mode would result in an excep­
tion and interruption of the program. Exceptions are the only way of
switching to the supervisor mode, but more about that later.

A further difference is in the stack range used. Although A 7 is still used
as the stack pointer, another memory range is used for the stack itself.
Thus, the SP is changed each time you switch from one mode to the

25

2. The MC68000 Processor Amlga Machine Language

2.3.2

26

other. Because of this you differentiate between the User SP (USP) and
the Supervisor SP (SSP).

Accessing memory can also depend on these two modes. During such
accessing, the processor sends signals to the peripheral components in­
forming them of the current processor mode. This way a 68QOO computer
can protect (privilege) certain memory ranges so they cannot be accessed
by the user.

In the supervisor mode it is possible to execute all instructions and access
all areas of memory. Because of this, operating systems usually run in
the supervisor mode. This is accomplished through the use of exceptions.

Exceptions

Exceptions are similar to interrupts on 6500 computers. This allows
stopping a program, running a sub-program, and then restarting the
stopped program. When an exception occurs the following steps are
taken:

1) The status register is saved
2) The S bit in the SR is set (supervisor mode) and the T bit is

cleared (no trace)
3) The program counter and the user SP are saved
4) The exception vector, which points to the needed exception

routine, is retrieved
5) The routine is executed

The vectors mentioned, which contain the starting addresses for the var­
ious routines, are located at the very beginning of the memory. Here's an
overview of the vectors and their respective addresses:

Abacus 2. The MC68000 Processor

Number Address Used for
0 $000 RESET: starting SSP
1 $004 RESET: starting PC
2 $008 bus error
3 $OOC address error
4 $010 illegal instruction
5 $014 division by zero
6 $018 CHK instruction
7 $OIC TRAPV instruction
8 $020 privilege violation
9 $024 trace
10 $028 Axxx -instruction emulation
11 $02C Fxxx-instruction emulation

$030-$038 reserved
15 $03C uninitialized interrupt

$040-$05F reserved
24 $060 unjustified interrupt
25-31 $064-$083 level 1-7 interrupt
32-47 $080-$OBF TRAP instructions

$OCO-$OFF reserved
64-255 $100-$3FF user interrupt vectors

The individual entries in the table above need detailed explanation. So
let's go through them one by one ...

RESET: starting SSP
At reset, the long word stored at this location is used as the stack pointer
for the supervisor mode (SSP). This way you can specify the stack for the
RE SET routine.

RESET: starting PC

Address error

Illegal instruction

Again at reset, the value at this location is used as the program counter.
In other words, the RESET routine is started at the address stored here.

This exception is activated by a co-processor when, for instance, a
reserved or non-existent memory range is accessed.

This error occurs when a word or long word access is attempted at an odd
address.

Since all MC68000 instructions consist of one word, a total of 65536
different instructions are possible. However, since the processor doesn't
know that many instructions, there are a number of words that are invalid
instructions. Should such a word occur, this exception is prompted.

27

2. The MC68000 Processor Amlga Machine Language

Division by zero

ClIK instruction

Since the processor has a division function, and the division of anything
by zero is mathematically undefined and thus illegal, this exception
occurs when such an operation is attempted.

This exception occurs only with the CHK instruction. This instruction
tests that a data register's contents are within a certain limit. If this is not
the case, the exception is activated.

TRAPV instruction
If the TRAPV instruction is executed and the V bit (bit 1) in the status
word is set, this exception is prompted.

Privilege violation

Trace

If a privileged instruction is called from the user mode, this exception is
activated.

If the trace bit (bit 15) in the status word is set, this exception is activated
after each instruction that is executed. This method allows you to employ
a step by step execution of machine programs.

Axxx-instruction emulation
Fxxx-instruction emulation

Reserved

These two vectors can be used for a quite interesting trick. If an instruc­
tion beginning with $A or $F (such as $AOI0 or $F2(0) is called, the
routine to which the corresponding vector is pointing is accessed. In these
routines you can create chains of other instructions, in effect expanding
the processor's instruction vocabulary!

These vectors are not used.

Uninitialized interrupt
This exception is activated when a peripheral component that was not
initialized sends an interrupt.

Unassigned interrupt
Is activated when a BUS error occurs during the interrupt verification of
the activating component. However, the interrupt is usually activated
only by some type of disturbance.

Level 1-7 interrupt

28

These seven vectors point to the interrupt routines of the corresponding
priority levels. If the level indicated in the status word is higher than the
level of the occurring interrupt, the interrupt is simply ignored.

Abacus 2. The MC68000 Processor

TRAP instructions
These 16 vectors are used when a corresponding TRAP instruction occurs.
Thus, TRAP instructions from TRAP #0 to TRAP #15 are possible.

User interrupt vectors

2.3.3

These vectors are used for interrupts which are activated by several peri­
pheral components that generate their own vector number.

At this point you don't want to delve any deeper into the secrets of excep­
tions, since we'd be expanding this book beyond its framework. However,
there's one last thing to say about exceptions: the exception routines are
ended with the RTE (ReTurn from Exception) instruction, with which the
original status is restored and the user program is continued.

Interrupts

Interrupts are processed similarly to exceptions. They are breaks (or inter­
ruptions) in the program which are activated through hardware (such as a
peripheral component or an external trigger).

The interrupt level is stored in bits 8-10 of the status register. A value
between 0 and 7 indicates the interrupt level. There are eight different
possible interrupts, each of which has a different priority. If the level of
this interrupt happens to be higher than the value in the status register,
the interrupt is executed, or otherwise ignored.

When a valid interrupt occurs, the computer branches to the corresponding
routine whose address is indicated in the exception vector table above.

The interrupts are very important if you're trying to synchronize a
program with connected hardware. In this manner, a trigger (s.a. the
keyboard) which is to feed the computer data, can signal the request for a
legal value using an interrupt The interrupt routine then simply takes the
value directly. This method is also employed for the operation of the
serial interface (RS232).

We'll talk more about the use of interrupts at a later time. The last thing
we want to mention about interrupts at this time is that, like exceptions,
interrupt routines are terminated with the RTE instruction.

29

2. The MC68000 Processor Amlga Machine Language

2.3.4

30

Condition codes

When you write a program in any language, the need for a conditional
operation arises quite often. For instance, in a BASIC program

IF D1=2 THEN D2=0

represents a conditional operation. To write the equivalent in machine
language, you fIrst need to make the comparison:

CMP #2,D1

CMP stands for compare and compares two operands, in this case D I and
D2. How is this operation evaluated?

For this purpose you have condition codes (CC's), which exist in the
branch instructions of machine language. Because of this, you must
specify when and where the program is to branch.

The simplest variation of the branch instructions is an unconditional
branch. The corresponding instruction is 'BRA address', although this
won't help you here. After all, you need a conditional branch.

To retain the result of an operation, in this case a comparison (CMP),
several bits are reserved in the status word. Let's look at bit 2 first. which
is the zero flag. This flag is set when the result of the previous operation
was zero.

To explain the relationship between CMP and the Z flag, you must fIrst
clarify the function of the CMP instruction. Actually this instruction per­
forms the subtraction of the source operand from the destination operand.
In the example above, the number 2 is subtracted from the content of the
memory cell at Dl. Before the result of this subtraction is discarded, the
corresponding flags are set.

If the content ofDI in our example above happened to be 2, the result of
the subtraction would be O. Thus, the Z flag would be set, which can then
be evaluated through a corresponding branch instruction. Our example
would then look like this:

~~-~. - -------------

Abacus 2. The M C68000 Processor

CMP *2,Dl ;comparison, or subtraction
BNE UNEQUAL ;branch, if not equal (Z flag not set)
MOVE *0,D2 ;otherwise execute D2=0

UNEQUAL:
;program branches to here

BNE stands for Branch if Not Equal. This means, that if the Z flag was
cleared (=0) by the previous CMP, the program branches to the address
specified by BNE (here represented by UNEQUAL). The counterpart to
the BNE instruction is the BEQ (Branch if EQual) instruction, which is
executed if Z= 1.

Here's a list of all condition codes, which allow you to form conditional
branches using the Bcc (cc=condition code) format

T
F
HI
LS
CC,HS
CS,LO
NE
EQ
VC
VS
PL
MI
GE
LT
GT
LE

Condition
true, corresponds to BRA
false, never branches
higher than
lower or same
carry clear, higher or same
carry set, lower
not equal
equal
Overflow clear
Overflow set
plus, positive
minus, negative
greater or equal
less than
greater than
less or equal

*=logic AND, +=logic OR, '=logic NOT

Bits

C' * Z'
C+Z
C'
C
Z'
Z
V'
V

N*V +N'*V'
N*V' +N'*V
N*V*Z' +N'*V'*Z'
Z + N*V' + N'*V

Here are a few examples to demonstrate how these numerous conditions
can be utilized:

CMP *2,Dl
BLS SMALLER EQUAL

This branches if the content of Dl <= 2, whether Dl is 0, 1 or 2. In this
example, the BLE instruction would allow the program to branch even if
Dl is negative. You can tell this by the fact that the V bit is used in the
evaluation of this expression (see chart above). When the sign is changed
during the operation, this V bit is compared with the N bit Should both
bits be cleared (N bit=O and V bit=O) after the CMP subtraction (Dl-2),
the result has remained positive: the condition has not been met.

31

2. The MC68000 Processor Amlga Machine Language

32

The conditions EQ and NE are quite important for other uses, as well. For
instance, they can be used to determine if particular bits in a data word are
set, by writing the following sequence ...

AND 41%00001111,01
BEQ SMALLER

CMP 41%00001111,01
BEQ ALL

;masks bits out
;branches when none of the four
;lower bits is set

;branches when all four bits set

The AND instruction causes all bits of D 1 to be compared with the bits
of the parameter (in this case #%0000 1111). If the same bits are set in
both bytes, the corresponding bits are also set in the result If one bit of a
pair is cleared, the resulting bit is zero as well. Thus, in the result, the
only bits that are set are those bits of the lowest four that were set in D1.

This technique is known as masking. In the example above, only the
lowest four bits were masked out, which means that in the resulting byte,
only the lowest four appear in their original condition. All other bits are
cleared with the AND operand. Of course you can use any bit combina­
tion with this method.

If no bit at all is set in the result, the zero flag is set, thus fulfilling the
BEQ condition and branching the program. Otherwise, the next instruc­
tion is processed, in which D1 is compared with %00001111. When both
are equal, at least all of the four lowest bits of the original byte have been
set, in which case the following BEQ instruction branches.

Aside from CMP, the CC and CS conditions can also be used to deter­
mine whether a HI bit was pushed out of the data word during data
rotation with the ROL and ROR instructions.

Before you move on the instruction vocabulary of the MC68000, we'd
like to give you another tip:

The AssemPro assembler makes it quite easy to try every command in all
possible situations. Take the CMP command which we've been talking
about, for example. To test this command with various values and to
receive the results of the comparisons directly via the flags, try the
following.

Type the following into the editor.

run:
cmp $10,d1
bra run
end

Abacus 2. The MC68000 Processor

Assemble it, save the resulting code and enter the debugger. After re­
loading the code you can then single step through the program observing
the results the program has on the flags. Try changing the values in
register Dl and see how higher and lower values affect the flags.

By the way, using the start command as this time causes it.to run forever.
Well, at least until reset is hit, which isn't exactly desirable, either

This procedure isn't limited to just the CMP instruction. You can use it
to try any other instruction you're interested in.

33

2. The MC68000 Processor Amiga Machine Language

2.4 The 68000 Instructions

34

It's about time to explain the MC68000 instructions. You don't have
room for an in-depth discussion of each instruction in this book; for that
purpose we recommend Programming the 68000 from Sybex by Steve
Williams.

The following tables show the required parameters and arguments for each
instruction. AssemPro owners have access to built in help tables covering
effective addressing modes and many of the Amiga Intuition calls. The
following notation is used for arguments:

Label
Reg
An
Dn
Source
Dest
<ea>
#n

a label or address
register
address register n
data register n
source operand
destination operand
address or register
direct value

Here is a short list of the instructions for the MC68000 processor,
AssemPro owners can simply place the cursor at the beginning of the
instruction and press the help key to see the addressing modes allowed:

Mnemonic
Bee Label
BRA Label
BSR Label

CHK <ea>,Dx

DBee Reg,Label
JMP Label
JSR Label

NOP
RESET
RTE
RTR
RTS
See <ea>
STOP
TRAP #n
TRAPV

Meaning
conditional branch, depends on condition
unconditional branch (similar to JMP)
branch to subprogram. Return address is deposited
on stack, RTS causes return to that address.
check data register for limits, activate the CHK
instruction exception
check condition, decrement and branch.
jump to address (similar to BRA)
jump to a subroutine. Return address is deposited
on stack, RTS causes return to that address.
no operation
reset peripherals (Caution!)
return from exception
return with loading of flags
return from subroutine (after BSR or JSR)
set a byte to -1 when condition is met
stop processing (Caution!)
jump to an exception
check overflow flag, then TRAPV exception

Abacus 2. The MC68000 Processor

Here are a few important notes ...

When a program jumps (JSR) or branches (BSR) to a subroutine, the
return address to which the program is to return is placed on the stack. At
the RTS instruction, the address is pulled back off the stack, and the
program jumps to that point.

Let's experiment a little with this procedure. Please enter the following
short program:

run:
pea subprogram
jsr subprogram
move.l (sp) +,dl
illegal

subprogram:
move.l (sp) ,dO
rts
end

; address on the stack
; subprogram call
; get long word from stack
; for assemblers without
;debuggers

; return address in DO
; and return

The ftrst instruction, PEA, places the address of the subprogram on the
stack. Next. the JSR instruction jumps to the subprogram. The return
address, or the address at which the main program is to continue after the
completion of the subprogram, is also deposited on the stack at this
point.

In the subprogram, the long word pointed to by the stack pointer is now
loaded into the data register DO. After that, the RTS instruction pulls the
return address from the stack, and the program jumps to that address.

Back in the main program, the long word which is on the top of the
stack, is pulled from the stack and written into D1. Assemblers that do
not have the debugging features of AssemPro may need the ILLEGAL
instruction so they can break the program and allow you to view the
register contents.

Assemble the program and load the resulting code into the debugger.
Single step thru the program and examine the register contents.

Here you can see that DO contains the address at which the program is to
continue after the RTS command. Also, Dl contains the address of the
subprogram which you can verify by comparing the debugger listing.

The STOP and RESET instructions are so powerful that they can only be
used in the supervisor mode. Even if you do switch to the supervisor

35

2. The MC68000 Processor Amlga Machine Language

36

mode, you should llil1 use these instructions if there is any data in mem­
ory that has not been saved and you wish to retain.

The TRAP instruction receives a number between 0 and $F, which deter­
mines the particular TRAP vector (addresses $OO80-$OOBF) and thus the
corresponding exception routine. Several operating systems for the 68000
utilize this instruction to call operating system functions. You'll deal
more with this instruction later.

In the short sample program that compared two numbers, the CMF
instruction performed an arithmetic function, namely a subtraction. This
subtraction could be performed with an actual result as well using the
SUB instruction. The counterpart to this is in addition, for which the
ADD instruction is used. In eight bit processors, like the 6502, these two
arithmetic functions are the only mathematical operations. The
MC68000, can also multiply, divide, and perform these operations with a
variety of data sizes.

Most of the functions require two parameters. For instance the ADD
instruction ...

ADD source,destination

where source and destination can be registers or memory addresses. Source
can also be a direct value (#n). The result of the operation is placed in the
destination register or the destination address. This is the same for all
operations of this type. These instructions can be tried out with the
Assempro assembler. In this case we recommend the use of a register as
the destination.

Here's an overview of the arithmetic operations with whole numbers:

Mnemonic Meaning
ADD source,dest binary addition
ADDA source,An binary addition to an address register
ADD I #n,<ea> addition with a constant
ADDQ #n,<ea> fast addition of a constant which can

be only from 1 to 8
ADDX source,dest addition with transfer in X flag
CLR <ea> clear an operand
CMP source,dest comparison of two operands
CMPA <ea>,An comparison with an address register
CMPI #n,<ea> comparison with a constant
CMPM source,dest comparison of two memory operands

Abacus

Mnemonic
D IVS source,dest

DIVU source,dest

EXT Dn

MULS source,dest

MULU source,dest

NEG <eel>

NEGX <ea>
SUB source,dest
SUBA <ea>,An

SUBI #n,<ea>
SUBQ #n,<ea>
SUBX source,dest
TST <eel>

2. The MC68000 Processor

Meaning
sign-true division of a 32 bit
destination by a 16 bit source
operand. The result of the division is
stored in the LO word of the
destination, the remainder in the HI
word
division without regard to sign,
similar to DIVS
sign-true expansion to twice original
size (width) data unit
sign-true multiplication of two words
into one long word
multiplication without regard to sign,
similar to MULS
negation of an operand (twos
complement)
negation of an operand with transfer
binary subtraction
binary subtraction from an address
register
subtraction of a constant
fast subtraction of a 3 bit constant
subtraction with transfer in X-Flag
test an operand and set N and Z flag

For the processing of whole numbers, the processor can operate with
BCD numbers. These are Binary Coded Decimal numbers, which means
that the processor is working with decimals. In this method, each halfbyte
contains only numbers from 0 to 9, so that these numbers can be easily
processed. For this method, the following instructions are available:

Mnemonic
ABCD
NBCD

SBCD

source,dest
source,dest

source,dest

Meaning
addition of two BCD numbers
negation of a BCD number (nine
complement)
subtraction of two BCD numbers

Again, we recommend that you try this out yourself. Although handling
the BCD numbers is relatively easy, it can be rather awkward at fIrst. Be
sure that you enter only BCD numbers for source and destination, since
the results are not correct otherwise.

Next are the logical operations, which you might know from BASIC.
With these functions, you can operate on binary numbers bit for bit.

37

2. The MC68000 Processor Amiga Machine Language

38

Mnemonic Meaning
AND source,dest logic AND
AND I #n,<ea> logic AND with a constant
EOR source,dest exclusive OR
EORl #n,<ea> exclusive OR with a constant
NOT <ea> inversion of an operand
OR source,dest logic OR
ORl #n,<ea> logic OR with a constant
TAS <ea> check a byte and set bit 7

Single bits can also be manipulated by the following set of instructions:

Mnemonic Meaning
BCHG #n,<ea> change bit n (0 is changed to 1 and

vice versa)
BCLR #n,<ea> clear bit n
BSET #n,<ea> set bit n
BTST #n,<ea> test bit n, result is displayed in Z flag

These instructions are particularly important from the manipulation and
evaluation of data from peripherals. After all, in this type of data, single
bits are often very significant. You'll come across this more in later
chapters.

The processor can also shift and rotate an operand within itself ('n'
indicates a register, '#' indicates a direct value which specifies the number
of shiftings) ...

Mnemonic Meaning
AS n,<ea> arithmetic shift to the left (*2 "n)
ASR n,<ea> arithmetic shift to the right (l2I\n)
LSL n,<ea> logic shift to the left
LSR n,<ea> logic shift to the right
ROL n,<ea> rotation left
ROR n,<ea> rotation right
ROXL n,<ea> rotation left with transfer in X flag
ROXR n,<ea> rotation right with transfer in X flag

All these instructions allow you to shift a byte, a word or a long word to
the left or right. It's not too surprising that this is the equivalent of mul­
tiplying (dividing) the number by a power of 2. Here's a little example to
demonstrate why.

Let's take a byte containing the value 16 as an example. In binary, it
looks like this:

Abacus 2. The MC68000 Processor

%00010000 ~ 16

Now, if you shift the byte to the left by inserting a 0 at the right, you'll
get the following result...

%00010000 shifted to the left equals
%00100000 ~ 32, in effect 16*2

Repeated shifting results in repeated doubling of the number. Thus, if you
shift the number n times, the number is multiplied by 2 "n.

The same goes for shifting to the right. However, this operation has a
slight quirk: here's a sample byte with the value 5:

%00000101 ~ 5, shifted once to the right equals
%00000010 ~ 2

The answer in this case is not 2.5 as you might expect. The result of
such a division is always a whole number, since any decimal places are
discarded. If you use the DIV instruction instead of shifting, you'll retain
the digits to the right of the decimal point. However, shifting is some­
what faster, and shifting can also receive long words as results.

After explaining the principle of shifting, you still need to know why
more than two instructions are required for the procedure. Well, this is
because there are several different types of shifting.

First, you must differentiate between shifting and rotating. In shifting,
the bit that is added to the left or the right side is always a zero. In
rotating, it is always a specific value that is inserted. This means that
with the ROR or the ROL instruction, the bit that is taken out on one
side is the one that is inserted on the other. With the ROXR and the
ROXL instructions this bit takes a slight detour to the X flag. Thus, the
content of the flag is inserted into the new bit, while the old bit is loaded
into the flag.

Shifting, as well, :~as two variations: arithmetic and logical shifting.
You've already dealt with logical shifting. In this variation, the inserted
bit is always a zero, and the extracted bit is deposited in the C flag and in
the X flag.

Although the highest bit, which always represents the sign, is shifted in
arithmetic shifting, the sign is still retained by ASR. This has the advan­
tage that when these instructions are used for division, the operation
retains the correct sign (-10/2 equals -5). However, should an overflow or
underflow cause the sign to change, this change is noted in the V flag,
which always indicates a change in sign. With logical shifting this flag is
always cleared.

39

2. The MC68000 Processor Amlga Machine Language

40

Now to the instructions that allow you to move data. These are actually
the most important instructions for any processor, for how else could you
process data?

Mnemonic Meaning
EXG Rn,Rn exchange of two register contents

(don't confuse with SWAP!)
LEA <ea>,An load an effective address in address

register An
LINK An,#n build stack range
MOVE source,dest carry value over from source to

destination
MOVE SR,<ea> transfer the status register contents
MOVE <ea>,SR transfer the status register contents
MOVE <ea>,CCR load flags
MOVE USP,<ea> transfer the user stack pointer
MOVE <ea>,USP transfer the user stack pointer
MOVEA <ea>,An transfer a value to the address register

An
MOVEM Regs,<ea> transfer several registers at once
MOVEM <ea>,Regs transfer several registers at once
MOVEP source,dest transfer data to peripherals
MOVEQ #n,Dn quickly transfer an 8 bit constant to

the data register Dn
PEA <ea> deposit an address on the stack
SWAP Dn swap the halves of the register (the

upper 16 bits with the lower)
UNLK An unlink the stack

The LEA or PEA instructions are often used to deposit addresses in an
address register or on the stack. The instruction

LEA label,AO

loads the address of the label 'label' into the address register AO. In prac­
tice, this corresponds to

MOVE.L #label,AO

which is equivalent to

PEA label

All these instructions deposit the address of 'label' on the stack. The fol­
lowing instruction also does this:

MOVE.L #label,- (SP)

Abacus 2. The MC68000 Processor

The LEA instruction becomes much more interesting when the label is
replaced by indirect addressing. Here's an example:

LEA 1 (AO,DO) ,AI

The address that's produced by the addition of 1 (direct value-offset)
+AO+DO is located in AI. To duplicate this instruction with MOVE
would be quite cumbersome. Take a look:

MOVE.L AO,AI
ADD.L DO,AI

ADDQ.L #I,AI

As you can see, the LEA instruction offers you quite some interesting
possibilities.

Those are all the instructions of the MC68000. Through their combina­
tion using the diverse methods of addressing, you can create a great
number of different instructions, in order to make a program as efficient
as possible.

The following table is an overview of all MC68000 instructions along
with their possible addressing types and the influence of flags. The fol­
lowing abbreviations are used:

x=legal s=source only d=destination only
-=not affected O=cleared *=modified accordingly
l=set u=undetermined P=privileged

41

2. The MC68000 Processor

42

Mnemonic

ABCD
ADD
ADDA
AOOl
ADDQ
ADDX
AND
ANDI
ASL, ASR
Bee
BCHG
BCLR
BRA
BSET
BSR
BTST
CHK
CLR
CMP
CMPA
CMPI
CMPM
epGEN
DBee
OIVS
OIVU
EOR
EORl
EORl CCR
EORI SR
EXG
EXT
EXTB
ILLEGAL
JMP
JSR
LEA
LINK
LSL, LSR
MOVE
MOVE A
MOVE to CCR
MOVE from SR
MOVE to SR

Amlga Machine Language

1 2 3 4 5 6 7 8 9 10 11 12

x x
s s x x x x x x x s s s
x x x x x x x x x x x x
x x x x x x x x
x x x x x x x x x
x x
s
x
x

x
x

x

x
x
x

x x x x x x x s s s
x x x x x x x
x x x x x x x

x x x x x x x
x x x x x x x

x x x x x x x

x x x x x x x z x x
x x x x x x x x x x
x x x x x x x

x x x x x x x x x x x x
x x x x x x x x x x x x
x

x
x
x
x

x

x x x x x x x
x x x x x x x

x x x x x x x x x x
x x x x x x x x x x
x x x x x x x
x x x x x x x

x
x
x

x x x x
x x x x
x x x x

x x x x x x x

x x
x x
x x

x s x x x x x x x s s s
x x x x x x x x x x x x
x
x
x

x x x x x x x x x x
x x x x x x x
x x x x x x x x x x

XNZVC P

-**00
-**00

--*--
--*--

--*--

--*--
-*uuu
-0100
-****
-****
-****
-***

-***0
-***0
-**00
-**00

-**00
-**00

***0*

-**00

P

***** p

Abacus 2. The MC68000 Processor

Mnemonic 1 2 3 5 6 7 8 9 10 11 12 XNZVC P

MOVE USP x P
MOVEM x s d x x x x s s
MOVEP s d
MOVEQ d -**00
MULS x x x x x x x x x x x -**00
MULU x x x x x x x x x x x -**00
NBCD x x x x x x x x *u*u*
NEG x x x x x x x x *****
NEGX x x x x x x x x *****
NOP
NOT x x x x x x x x -**00
OR s x x x x x x x s s s -**00
ORI x x x x x x x x -**00
PEA x x x x x x x
RESET P
ROL, ROR x x x x x x x -**0*
ROXL, ROXR x x x x x x x -**0*

RTE P

RTR *****
RTS
SBCD x x *u*u*
Sec x x x x x x x x
STOP x
SUB s s x x x x x x x s s s *****
SUBA x x x x x x x x x x x x
SUBT x x x x x x x x *****
SUBQ x x x x x x x x x *****
SUBX x x *****
SWAP x -**00
TAS x x x x x x x x -**00
TRAP x
TRAPV
TST x x x x x x x x -**00
UNLK x

43

Chapter 3

Working with
Assemblers

Abacus 3. Assemblers

3. Working with Assemblers

The instructions that you've learned so far are incomprehensible to the
MC68000 processor. The letters MOVE mean absolutely nothing to the
processor-it needs the instructions in binary form. Every instruction
must be coded in a word-which normally takes a lot of work.

An assembler does this work for you. An assembler is a program that
translates the instructions from text into the corresponding binary instruc­
tions. The text that is translated is called mnenomic or memcode. It's a
lot easier working with text instructions--or does $4280 mean more to
you than CLR.L DO?

This chapter is about working with assemblers. We'll describe the fol­
lowing three:

ASSEM This is the assembler from the Amiga's development package. This
assembler is quite powerful, but it is clearly inferior to it's two fellow
compilers in some areas.

AssemPro This is the Abacus assembler. It has a debugger in addition to the assem­
bler. This lets you test and correct programs. In our opinion, it is the best
one to use for writing and testing practice programs. For this reason, we
wrote the programs in this book with this assembler.

KUMA-SEKA This is a popular assembler that also has a debugger.

All assemblers perform a similar task-they translate memcode, so that
you can write a runnable program to disk. To test the program directly,
you need a debugger which is something ASSEM doesn't have.

47

3. Assemblers Amlga Machine Language

3. 1 The Development Assembler

48

This assembler is a plain disk assembler. That means that it can only
assemble text files that are on disk and write the results back to disk. You
can't make direct input or test run the new program.

You can call ASSEM from the eLI by typing ASSEM followed by
parameters that specify what you wish the assemble to do.

In the simplest case, you call it like this:

ASSEM Source -0 Destination

Source is the filename of the file containing the program text. Destina­
tion is the name of the file that contains the results of assembling after
the process is over. The "-0" means that the following name is used for
the object file.

There are several other parameters that can be passed. These are written
with their option (ie. -0), so that the assembler knows what to do with
the file that you've told it to use. The following possible options must
be followed by a filename:

-0 Object fIle
-v Error messages that occur during assembling are written to a fIle.

If this isn't given, the error messages appear in the eLI
window.

-L The output of the assembled program lines are sent to this file.
You can also use "PRT:" to have it printed.

-H This file is read in at the beginning of the assembled file and
assembled along with it.

-E A fIle is created that contains lines which have EQU instruc­
tions.

-C This option isn't followed by a fIlename but by another option.
You can also use OPT to do this. The following options are
available:
OPT S A symbol table is created which contains all the labels

and their values.
OPT X A cross-reference list is created (where labels are used)
OPT W A number must follow this option. It sets the amount

of work space to be reserved.

Abacus 3. Assemblers

The assembler creates an object file. This is not runnable. To make it
runnable, you need to call the linker, ALINK. This program can link
several assembled or compiled object files together to make a runnable
program. In the simplest case, you enter the following instruction in the
eLI:

ALINK Source TO Destination

Source is the object file produced by the assembler. Destination is the
name of the program. It can be started directly.

49

3. Assemblers Amlga Machine Language

3.2 AssemPro

50

Abacus's AssemPro is a package which combines editor, assembler and
debugger in an easy to use package.

The AssemPro program is divided into several windows-one for the
assembler, the editor, the debugger and several help functions. Producing
a program is very easy:

1) Write the program with the editor and then store it to disk.
2) Start the assembler, so that the program is translated.
3) If desired, start the debugger, load the program and test it.

Within the debugger you can work through parts of the program or even
through single commands. As after each one of these steps the debugger
shows you the state of registers and flags in its status register, you can
easily try the programs presented in this book.

You need to load Assempro only once when working with machine
language programs. Thus you don't need to save back and to between
editor, assembler, linker and debugger.

Assempro has an especially interesting function: the reassembler. With
this debugger function you are able to convert runable programs into the
source text of the program. Once you have made the source text, you can
edit the program using the editor and assemble it again. Assempro is
equipped with functions other assemblers miss. There are however, some
differences you should know about. As many programs you see were writ­
ten for the K-SEKA, be aware of one difference: the EVEN command.
AssemPro uses the ALIGN instruction.

Note, that when entering and assembling one of the programs in Assem­
pro you must make sure that you place an END directive at the end of the
source text.

The following is an introduction into working with Assempro and the
programs in this book.

Start AssemPro normally, next click on the editor window and start
typing in your program. If the program is on disk already, load it by
selecting the appropriate menu or by using the key combination right

Abacus 3. Assemblers

<AMIGA> key and <0>. To do this you only need to click on the file­
name in the displayed requestor and click the OK gadget.

Once you have typed in or loaded the program into the editor, you can
assemble it. It is best to save your source before you start assembling.
You assemble your program by clicking on the assembler window
displayed above the editor window and pressing <AMIGA> and <a>. You
can then chose how to locate your program in the memory. Remember
that data used by the co-processors must be located in CHIP RAM.

By clicking OK you start the assembler process. If you additionally select
"breakable", you can cancel the process by pressing both shift keys. If
any error occurs during assembling, Assempro uses a window to tell you
this. Use this window to correct the error and continue with "Save and try
again".

Now the runable program is located in the Amiga's memory. Use the
menu item "Save as" to save it on disk. If you want to store it on RAM
disk, click the given filename and enter RAM: in front of this name. In
addition you can click on the menu item "ICON" and chose if you only
want the program itself on disk but the icon too. Use this icon to start
the program at a later time from the Workbench.

To test-run the program, you move the debugger window to the fore­
ground of the screen (for instance by clicking on the back gadget). Use
"Load" in the debugger menu or <AMIGA> <0> to call the select-file
window, where you select the saved program. The program is then loaded
into the memory and its shown disassembled.

The highlighted line (orange) represents the current state of the program
counter. This is the line where the processor reads its next instruction,
provided you tell the processor so. There are three ways to do so.

The fIrst one is to start the program with "Start". This alternative does
not enable you to stop the program if anything goes wrong.

The second possibility, "Start breakable" is better in this respect. After
the program starts, it continuously displays the register's contents on the
left side of the window. In addition to that you can cancel the process by
pressing <Esc>. Note that this only works if your program doesn't use
the <Esc> key itself.

The third possibility enables you to only partly run your program. You
can do this by stepping through the program or by placing breakpoints
throughout the program. You place these by clicking on the desired
address and then pressing <AMIGA> . "BREAKPOINT" is displayed

51

3. Assemblers

52

Amlga Machine Language

where the command was displayed before. If you start the program now, it
stops whenever it comes across one of the breakpoints.

You can start a small part of the program by moving the mouse pointer
to the orange line, clicking the left button and holding it down while you
drag the mouse pointer downward. If you release the button, the processor
works through this part of the program, stopping at the line, where you
positioned the mouse pointer. This is a very useful method to step by
step test a program.

AssemPro has another helpful window: the Table. This window lists the
valid address methods for instructions and the parameters of Amiga func­
tions. This is extremely helpful whenever you are not sure about one of
the instructions.

Abacus 3. Assemblers

3.3 The K-SEKA Assembler

The SEKA assembler, from KUMA, has a simple text editor and a
debugger in addition to the assembler. This program is controlled by
simple instructions and is easy to use. It is also multi-functional and
quick, so it is great for small test and example programs. You can use it
to write bigger programs once you've gotten use to the editor. Now let's
look at the editor.

To load a program as source code (text) into the editor, enter "r" (read).
The program asks you for the name of the file with the "FILENAME>"
prompt. You then enter the name of the text file. If you created the file
with SEKA, the file is stored on disk with ".S" on the end of its name.
You don't need to include the ".S" when you load the file. That's taken
care of automatically. ("S" stands for source.)

You can store the programs you've just written or modified by using the
"w" instruction. The program asks you for the name. If you enter "Test",
the file is written to disk with "Test.S" as its name. This is a normal text
file in ASCII format.

There are two ways to enter or change programs: using the line editor or
using the screen editor. You can enter the second by hitting the <Esc>
key. The upper screen section is then reserved for the editor. You can
move with the cursor keys and change the text easily. The lines that you
enter are inserted into the existing text and automatically numbered. By
hitting the <Esc> key again, you leave the screen editor.

There's really not much to say about this editor. It's really just for simple
insertions and changes. Other functions are called in normal instruction
mode, the mode in which ">" is the input prompt.

The following instructions are available to you for text editing «n>
stands for a number. The meaning of the instructions is in parenthesis.)

53

3. Assemblers

54

Instruction
t (Target)
t <n>
b (Bottom)
u(Up)
u <11>

d(Down)
d<n>
z (Zap)
Z <11>

e(Edit)
e <11>

ftext (Find)

f

i (Insert)

ks (Kill Source)

o (Old)
p (Print)
P <11>

Amlga Machine Language

Function
Puts the cursor on the highest line in the text.
Puts the cursor on line n.
Puts the cursor on the last line of the text.
Go up one line.
Go up n lines.
Go down one line.
Go down n lines.
Deletes the current line.
Deletes n lines starting at the cursor line.
Let's you edit the current line (and only that line).
Edit from line n.
Searches for the text entered starting at the current line.
The case of a letter makes a difference, so make sure to
enter it correctly. Blanks that appear after the fare
looked for as well!
Continues searching beyond the text that was previous­
ly given.
Starts the line editor. Now you can enter a program line
by line. However, you can't use the cursor to move
into another line. Line numbers are generated automati­
cally. The lines that follow are moved down, not erased.
The source text is deleted if you answer "y" when the
program asks if you're sure. Otherwise nothing
happens.
Cancels the "ks" function and saves the old text.
Prints the current line.
Prints n lines starting at the cursor line.

Those are K-SEKA's editor functions. In combination with the screen
editor, they allow for simple text editting. You can, for example, delete
the current line (and other lines) while working in the screen editor by
hitting <Esc> to get into instruction mode and then entering "z" (or "z
<n>").

If you'd like to edit all the lines that contain "trap", for example, you can
do the following:

- Jump to the beginning of the text using "t".
- Search for a "trap" instruction by entering "ftrap" in the first line.
- Press <Esc> and edit the line.
- Press <Esc> again to get into instruction mode.
- Search using "f', <Esc>, etc. until you get to the end of the text.

This sounds very clumsy, but in practice it works quite well and goes
quickly. Experiment with the editor a bit, so that you can get use to it.

Abacus 3. Assemblers

Now here are the instructions for working with disks:

Instruction
v (View Files)

kf (Kill File)

r (Read)

ri (Read Image)

rx (Read from AuxiUary)

rl (Read Link file)

Function
Look at the disk's directory. You can also
include the disk drive or subdirectory that
interests you. For example, "vc" causes the "c"
subdirectory to be listed and makes it the
current directory.
The program asks for the name of a file. The
file is deleted (and you aren't asked if you are
sure either-so be careful).
After inputting this instruction, you'll be
asked which file to load (FILENAME». The
file that you specify is then loaded. If only "r"
is entered, a text file is loaded in the editor.
Loads a file into memory. After you've entered
the filename, SEKA asks for the address the
file should begin at in memory (BEGIN» and
the highest address that should be used for the
me (END».
This works just like the "ri" function except
that it reads from the serial port instead of
from the disk. (You don't need a mename).
This instruction reads in a SEKA created link
file. First you'll be asked if you're sure, be-
cause the text buffer is erased when the link
me is loaded.

w (Write) After entering this instruction, you'll be asked
for the name of the file the text should be
written to. A "$' is automatically appended to
the name, so that it can be recognized as a
SEKAfile.

wi (Write Image) Stores a block of memory to disk after the
name, beginning and end are entered.

wx (Write to AuxilIary) This is similar to "wi"; the only difference is
that the output is to the serial intrface.

wI (Write Link me) Asks for the name and then stores a link file
that was assembled with the "I" option to disk.
If this isn't available, the message "** Link
option not specified" appears.

Once you've typed in or loaded a program, you can call the assembler and
have the program translated. Just enter "a" to do so. You'll then be asked
which options you want to use. If you enter a <Return>, the program is
assembled normally-ie the results of translating a program in memory is
stored in memory. Then the program can be executed right a way.

55

3. Assemblers

56

Amlga Machine Language

You can enter one or more of the following options however:

v The output of the results goes to the screen
p oc
e goes to the printer with a title line.
h The output stops after every page and waits for a key stroke.

This is useful for controlling output to the screen or for putting
new sheets of paper in the printer.

o This option allows the assembler to optimize all possible branch
instructions. When possible, a .S is appended to the branch
instructions. This allows the program code to be shorter than it
would otherwise be. Several messages appear, but you can ig­
nore them.
This option caused linkable code to be produced. You can save it
with the "wI" instruction and read it with the "rI" instruction.

A symbol table is included at the end of the listing if desired. The table
contains all labels and their values. It also contains macro names. A mac­
ro allows several instructions to be combined into a single instruction.

For example, suppose you wrote a routine that outputs the text that
register AO points to. Every time you need to use the routine, you must
type:

lea text,aO
bsr pline

;Pointer to text in AO
;Output text

You can simplify this by defining a macro for this function. To do this,
put the following at the beginning of the program:

print: macro
lea? 1,aO
bsr pmsg

endm

;Macro with the name "print"
;Parameter in AO
;Output text
;end of macro

Now, you can simply write the following in your program:

print text ;Output text

This line is replaced using the macro during assembly. The parameter
"text" is inserted where "71" appears in the macro. You can have several
parameters in a macro. You give them names like "?2", "?3", etc ...

You can also decide whether you'd like to see the macros in the output
listing of the assembler. This is one of the pseudo-operators (Pseudo-ops)
that are available in the assembler. The SEKA assembler has the fol­
lowing pseudo-ops:

A baclls 3. Assemblers

Defines one or more data items that should appear in this loca­
tion in the program. The word length can be specified with .B,
.W, or .L-and if this is left off, .B is used. Text can be entered
in quotation marks or apostrophes.
For example: dc.b "Hello",10,13,0

blk Reserves a number of bytes, words or long words, depending on
whether .B, .W or .L is chosen. The first parameter specifies the
number of words to be reserved. The second (which is optional)
is used to fill the memory area.
For example: blk.w 10,0

org The parameter that follows the org instruction is the address
from which the (absolute) program should be assembled
For example: org $40000

code Causes the program to be assembled in relative mode, the mode
in which a program is assembled starting at address O. The
Amiga takes care of the new addressing after the program is
loaded.

data This means that from here on only data appear. This can be left
out.

even Makes the current address even by sometimes inserting a fill
byte.

octi The opposite of "even"-it makes the address odd
errl Assembling ends here.
equ or Used for establishing the value of a label.

For example: Value = 123 or Value: equ 123
list Turns the Olltput on again (aften nlist). You can use the fol­

lowing parameters to influence the output:
c Macro calls
d Macro defmitions
e Macro expansion of the program
x Code expansions
For example: list e

nlist Turns off output. You can use the same parameters here as with

page

if

else
endif
macro
endm
10

?O

"list" .
Causes the printer to executed a page feed, so that you'll start a
newpage.
The following parameter decides whether you should continue
assembling. If it is zero, you won't continue assembling.
If the "if' parameter is zero, you'll begin assembling here.
End of conditional assembling
Start of a macro definition
End of a macro defmition
The text in the macro that is replaced by the nth parameter in the
calling line.
Generates a new three digit number for each macro call-this is
very useful for local labels.

57

3. Assemblers

58

illegal
globl

Amiga Machine Language

For example: x?O: bsr pmsg
Produces an illegal machine language instruction.
Defines the following label as global when the "I" option of the
assembler is chosen.

Once you've assembled your program, the program code is in memory.
Using the "h" instruction, you can fmd out how large the program is and
where it is located in memory. The beginning and end address is given in
hex and the length is given in decimal (according to the last executed
operations):

Work The memory area defined in the beginning
Src Text in memory
RetC Relocation table of the program
ReID Relocation table of the memory area
Code Program code produced
Data The program's memory area

You'll find your program in memory at the location given by Code. It's a
pain to have to enter this address whenever you want to start the program.
It makes good sense to mark the beginning of the program with a label
(for example, "run:"). You can use the "g" instruction to run the program
as follows:

g run

The "g" (Go) instruction is one of SEKA's debugger instructions. Here's
an overview:

x Output all registers
xr Output and change of registers (ie xdO)
gn Jump to address n. You'll be asked for break points, addresses at

which the program should terminate.
jn This is similar to the one above-a JSR is used to jump into

the program. The program must end with a RTS instruction.
qn Output the memory starting at address n. You can also specify

the word length.
For example: q.w $10000

nn Disassembled output starting at address n
an Direct assembling starting at address n. Direct program instruc­

tions are entered.
mn Modify the contents of memory starting at address n. Here too,

the word length can be given. You can terminate input with the
<Esc> key.

sn Executes the program instruction that the PC points to. After
you enter this instruction, n program steps are executed.

Abacus

f

c

?

a

3. Assemblers

Fill a memory area. You can choose the word width. All the
needed parameters are asked for individually.
Copies one memory area to another. All the needed parameters
are asked for individually.
Outputs the value of an expression or a label
For example: ? run+$1000-256
Sets an instruction sequence that is passed to the program when
it starts as if it was started from eLI with this sequence
Leave the SEKA assembler after being asked if you are sure.

You saw some of the calculations like SEKA can make in the "?" ex­
ample. You can also use them in programming. The following operations
work in SEKA:

+

*
I
&

Addition
Subtraction
Multiplication
Division
Logical AND
Logical OR
EXclusive OR (XOR)

These operations can also be combined. You can choose the counting
system. A "$" stands for hexadecimal, "@" for octal, and "%" for binary.
If these symbols aren't used, the number is interpreted as a decimal num­
ber.

Let's go back to the debugger. As mentioned, after entering "g Address",
you'll be asked for break points. You can enter up to 16 addresses at
which the program halts. If you don't enter break points, but instead hit
<Return>, the program must end with an ILLEGAL instruction. If it ends
instead with a RTS, the next return address from the stack is retrieved and
jumped to. This is usually address 4 which causes SEKA to come back
with "** Illegal Instruction at $000004", but there's no guarantee that it
will. You're computer can end up so confused that it can't function.

The SEKA program puts an ILLEGAL instruction in the place specified
as break points after saving the contents of these locations. If the pro­
cessor hits an illegal instruction, it jumps back to the debugger by using
the illegal instruction vector that SEKA set up earlier. Then SEKA
repairs the modified memory locations and then displays the status line.
Here you can fmd out where the program terminated.

Using break points is a good technique for finding errors in the program.
You can, for example, put a break point in front of a routine that you're
not sure about and start the program. When the program aborts at this

59

3. Assemblers

60

Amiga Machine Language

spot, you can go through the routine step by step using the "s" option.
Then you can watch what happens to the status line after each instruction
and fmd the mistake.

Program errors are called bugs. That's why the program which finds them
is called a debugger.

Chapter 4

Our First Programs

Abacus 4. Our First Programs

4. Our First Programs

You're getting pretty far along in your knowledge of machine language
programming. In fact, you're to the point where you can write programs,
and not just programs for demonstration purposes, but ones which serve a
real function. We're assuming that you have the AssemPro assembler and
have loaded it

If you're using a different assembler, a few things must be done differ­
ently. We covered those differences already in the chapter on the different
assemblers.

We've written the example programs as subroutines so they can be tried
out directly and used later. After assembling the program, you can put the
desired values in the register. Then you can either single-step thru the pro­
grams or run the larger programs and observe the results in the registers
directly. (Using the SEKA assembler you can type "j Program_name" to
start the program. Then you can read the results from the register directly,
or use "q Address" to read it from memory.)

Let's start with an easy example, adding numbers in a table.

4.1 Adding tables

Imagine that you have numbers in memory that you'd like to add. Let's
assume that you have five numbers whose length is one word each. You
want their sum to be written in register DO. The easiest way to do this is:

; (4.1A)
addingl:

clr.l
move
add
add
add
add
rts

table: dc.w
end

DO
table,dO
table+2,dO
table+4,dO
table+6,dO
table+8,dO

2,4,6,8,10

;Erase DO (=0)
;First entry in DO
;Add second entry
;Add third entry
;Add fourth entry
;Add fifth entry
;Return to main program

63

4. Our First Programs Amiga Machine Language

64

Try out the program using the debugger by single stepping thru the pro­
gram until you get to the RTS instruction (left Amiga T). (SEKA owners
use '1 addingl"). You see that data register DO really contains the sum of
the values.

The method above only reads and adds numbers from a particular set of
addresses. The Amiga's processor has lots of different sorts of addressing
modes that give us a shorter and more elegant solution. Let's add a
variable to the address of the table, so that the program can add different
tables.

Let's put the address of the table in an address register (for example, AO)
instead. This register can be used as a pointer to the table. You must use
move.l since only long words are relocatable. By using a pointer to a
table you can use indirect addressing. You can change the expression
"table+x" to "x(aO)".

;(4.1B)
addingl:

clr.l DO
move.l ttable, aO
move 0 (aO) ,dO
add 2(aO),dO
add 4 (aO) ,dO
add 6 (aO) ,dO
add 8 (aO) ,dO
rts

table: dc.w 2,4,6,8,10

end

;Erase DO (=0)
;Put table address in AO
;Put first entry in DO
;add second entry
;add third entry
;Add fourth entry
;Add fifth entry
;Return to main program

Assemble this program, load it into the debugger. Then single step (left­
Amiga T) thru this program and you'll see that this program adds five
numbers in order just like the last one. The reason you used a step size of
two for the offset is that words are two bytes long. AssemPro also de­
faults to relocatable code so that you must move #table as a long word.

Let's improve the program more by using "(aO)+" instead of "x(a)". This
way, every time you access elements of the table, the address register AO
is automatically incremented by the number of bytes that are read (in this
case two). The difference between this and the last example is that here
the register's contents are modified. The pointer is to the next unused byte
or word in memory.

Let's make it even better. Let's make the number of words to be added to
a variable. You'll pass the number in register D1. Now you need to do a
different sort of programming, since you can't do it with the old methods.

Abacus 4. Our First Programs

Let's use a loop. You need to add Dl words. You can use (aO)+ as the ad­
dressing method (Address register indirect with post increment), since this
automatically gets you to the next word.

Now for the loop. You'll have Dl decremented by one every time the
contents of the pointer are added. If Dl is zero, then you're done. Other­
wise, you need another addition. The program looks like this:

; (4.1C)
adding2:

clr.l dO
move.l #table,aO
move 41$5,d1

loop:
add (aO) +,dO
subq 411,dl
bne loop
rts

table: dc.w 2,4,6,8,10
end

;Erase DO
;Put table address in AO
;Put number of entries in d1

;Label for loop beginning
;Add a word
;Decrement counter
;Continue if non-zero
;Else done

Let's take a close look at this program. Load the pointer AO with the
address of the data and the counter Dl with the number of elements. Then
you can single step thru the program and watch the results. Make sure not
to run the [mal command, the RTS command. because otherwise a return
address is popped from the stack, and the results of this are unpredictable.
(SEKA owners can use "x pc" to point the program counter to "adding2".
You can then step through the program using the "s" command and watch
the results.)

To finish up this example, you're assigning a little homework. Write the
program so that it adds single bytes or long words. Try to write a
program that takes the first value in a table and subtracts the following
values. For example, the table

table: dc.w 50,8,4,6

should return the value 50-8-4-6, ie 32 ($20).

65

4. Our First Programs Amiga Machine Language

4.2 Sorting a table

66

Let's keep working with tables. You don't want to just read data from one
this time. You want to change it. You'll sort the table in ascending order.

You need to decide how to do the sorting. The simplest method is to do
the following.

Compare the first and the second value. If the second value is larger than
the frrst one, things are OK so far. Do the next step, compare the second
and third values, and so on. If you come to the final pair and in each case
the preceding value was smaller than the following value, then the sorting
is done (it was unnecessary).

If you fmd a pair where the second value is smaller than the frrst, the two
values are exchanged. You then set a flag (here let's use a register) that is
checked once you're done going through the table. If it is set, the table
probably isn't completely sorted. You then erase the flag and start again
from the beginning. If the flag is still zero at the end, the sorting is
complete.

Now let's write a program to do this. First let's figure out the variables
you need. You'll use registers for the variables. You need a pointer to the
table you're sorting (AO), a counter (DO) and a flag (DI). While the
program is running, change these values, so you'll need two more regis­
ters to store the starting values (address and the number of table entries).
You'll use Al and D2.

Let's start writing the program, each section will be written and then
explained. Then the complete program will be given. You put the table's
address in Al and the number of entries in D2.

;(4.2A) part of sort routine
sort: ;Start address of the program

move.l ttable,al ;Load pointer with address
move.l al,aO ;Copy pointer to working register
move.l #5,d2 ;Number in the counter
move.l d2,dO ;Copy number of element s
subq #2,dO ;Correct counter value
clr d1 ;Erase flag

table: dc.w 3,6,8,9,5

end

Abacus 4. Our First Programs

Now the preparations are complete. The pointer and the counter are ready
and the flag is cleared. The counter is decremented by two because you
want to use the DBRA command (take off one) and only X-I comparisons
are needed for X numbers (take off one more).

Next let's write the loop that compares the values. You compare one
word with another. It looks like this:

loop:
move
cmp

2(aO),d3
(aO) ,d3

;Next value in Register 03
;Compare values

You need to use register D3 because CMP (AO),2 (AO) isn't a legal
choice. If the second value is greater than or equal to the first value, you
can skip an exchange.

bcc noswap ;Branch if greater than or equal
;to

Now you need to do the exchanging (unfortunately you can't use exc
2 (a 0) , (a 0) since this form of addressing doesn't exist).

doswap:
move (aO) ,dl
move 2(aO),(aO)
move dl,2 (aO)
moveq #l,dl

noswap:

;Save first value
;Copy second into first word
;Move first into second
;Set flag

Now increment the counter and continue with the next pair. You do this
until the counter is negative.

addq.l #2,aO ;Pointer+2
dbra dO,loop ;Continue looping until the end

Now you'll see if the flag is set. You start again at the beginning if it is.

tst
bne
rts

dl
sort

;Test flag
;Not finished sorting yet!
;Otherwise done. Return.

If the flag is zero, you're done, and the subroutine ends. You jump back
to the main program using the RTS command.

Now a quick overview of the complete program.

67

4. Our First Programs Amlga Machine Language

68

(4.2B)
sort: ;Start address of the program

move.l #table,al ;Load pointer with address
move.l al,aO ;Copy pointer to working

;register
move.l #5,d2 ;Number in the counter
move.l d2,dO ;Copy number of elements
subq #2,dO ;Correct counter value
clr dl ;Erase flag

~, op:
move 2 (aO) ,d3 ;Next value in Register D3
emp (aO) ,d3 ;Compare values
bee noswap ;Branch if greater than or equal

;to

doswap:
move (aO) ,dl ;Save first value
move 2 (aO), (aO) ;Copy second into fir st word
move dl,2 (aO) ;Move first into second
moveq #l,dl ;Set flag

noswap:
addq.l #2,aO ;Pointer+2
dbra dO,loop ;Continue looping until the end
tst dl ;Test LLag
bne sort ;Not finished sorting yet!
rts ;Otherwise done. Ret urn.

table: de.w 10,8,6,4,2 ; When finished, acceding

end

To test this subroutine, assemble the routine with AssemPro, save it and
then load it into the debugger. The table is directly after the RTS, notice
its order. Set a breakpoint at the RTS, select the address with the mouse
and press left-Amiga-B sets a breakpoint in AssemPro. Start the program
then redisplay the screen by selecting "Parameter-Display-Dissassem-bled"
and examine the order of the numbers in the table, they should now be in
ascending order.

You use several registers in this example for storing values. Usually in
machine language programming your subroutines cannot change any
registers or can only change certain registers. For this reason, there is a
machine language command to push several registers onto the stack at the
same time. This is the MOVEM ("MOVE Multiple") command. If you
insert this command twice into your program, then you can have the
registers return to the main program with the values they had when the
subroutine was called. To do this, you need one more label. Let's call it
"start"; the subroutine is started from here.

Abacus

start:

sort:
movem.l dO-d7/aO-a6,- (sp)

etc ...

bne sort

movem.l (sp) +,dO-d7/aO-a6
rts

4. Our First Programs

;Save registers

jNot finished sorting yet!

;Retrieve registers
;Finished!

This powerful command moves several registers at the same time. You
can specify which registers should be moved. If you want to move the
D I, D2, D3, D7, A2 and A3 registers, just write

movem.l dl-d3/d7 / a2-a3,- (sp)

Before you quit sorting, do one little homework assignment. Modify the
program, so that it sorts the elements in descending order.

69

4. Our First Programs Amiga Machine Language

4.3 Converting number systems

4.3.1

70

As we mentioned in the chapter on number systems, converting numbers
from one base to another can be rather difficult. There is another form of
numeric representation-as a string that can be entered via the keyboard or
output on the screen.

You want to look at some of the many conversions possible and write
programs to handle the task. You'll start by converting a hex number into
a string using binary numbers and then print the number value in hex.

Converting hex to ASCII

First you need to set the start and finish conditions. In this example, let's
assume that data register D1 contains a long word that should be con­
verted into an 8-digit long string of ASCII characters. You'll write it to a
particular memory location so that you can output it later.

The advantage of using hex instead of decimal is pretty clear in this
example. To find out the hexadecimal digit for a particular spot in the
number, you just need to take the corresponding 4 bits (half byte) and do
some work on it. A half byte (also called a nibble) contains one hex digit.

You'll work on a half byte in D2. To convert this to a printable character,
you need to use the correct ASCII code. The codes for the 16 characters
that are used as hex digits are the following:

o 123 4 5 678 9 ABC 0 E F

$30 $31 $32 $33 $34 $35 $36 $37 $38 $39 $41 $42 $43 $44 $45 $46

To convert the digits 0-9, you just need to add $30. For the letters A-F
that correspond to the values 10-15, you need to add $37. The program to
evaluate a half byte must make a distinction between values between 0
and 9 and those between A and F and add either $30 or $37.

Now let's write a machine language subroutine that you'll call for each
digit in the long words hex representation.

Abacus 4. Our First Programs

nibble:
and #$Of,d2 ;Just keep low byte
add #$30,d2 ;Add $30
cmp #$3a,d2 ;Was it a digit?
bcs ok ;Yes: done
add #7,d2 ;Else add 7

ok:
rts ;Oone

This routine converts the nibble in D2 to an ASCII character that corres­
ponds to the hex value of the nibble. To convert an entire byte, you need
to call the routine twice. Here is a program to do this. The program
assumes that AO contains the address of the buffer that the characters are
to be put in and that Dl contains the byte that is converted.

; (4.3.1a) bin-hex

byte:

nibble:

ok:

buffer:

lea
move
bsr
rts

move
lsr

bsr
move.b
move
bsr
move.b
rts

and
add
cmp
bcs
add

rts

buffer,aO
#$4a,dl
byte

dl,d2
#4,d2

nibble
d2, (aO) +
dl,d2
nibble
d2, (aO) +

#$Of,d2
#$30,d2
#$3a,d2
ok
#7,d2

blk.b 9,0

end

;your program
;Pointer to bu ffer
;Byte to be converted (Example)
;and convert

;more of your program

;Move value into 02
;Move upper nibble into lower
;nibble
;Convert 02
;Put character in buffer
;Value in 02
;Convert lower nibble
;and put it in buffer
;Oone

;Just keep low byte
;Add $30
;Was it a digit?
;Yes: done
;Else add 7

;Oone

;Space for long word data

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Next set a breakpoint at the first
RTS, to set the breakpoint in AssemPro select the correct address with
the mouse and press the right-Amiga-B keys. Start the program and watch
the contents of D2, it is first $34 (ASCII 4) and finally $41 (ASCII A).
Select "Parameter-Display-HEX-Dump" and you'll see that 4A has been
moved into the buffer.

71

4. Our First Programs Amlga Machine Language

72

This is how the routine operates. First, you move the value that you
wish to convert into 02. Then you shift the register four times to the
right to move the upper nibble into the lower four bits. After the
subroutine call, you use "move.b d2,(aO)+" to put the HI nibble in the
buffer. Then the original byte is put in 02 again. It is converted. This
gives us the LO nibble as an ASCII character in 02. You put this in the
next byte of the buffer.

The buffer is long enough to hold a long word in characters and closing
the null byte. The null byte is usually required by screen output routines.
Screen output will be discussed in a later chapter. Now le['s worry about
converting a long word.

When converting a long word, you need to be sure to deal with the
nibbles in the right order. Before calling the "nibble" routine for the fIrst
time, you need to move the upper nibble into the lower four bits of the
long word. You need to do this without losing anything.

The LSR command isn't very good for this application. If you use it,
you'll lose bits. It's better to use the rotation commands like ROR or
ROL, since they move the bits that are shifted out, back in on the other
side.

If you shift the original long word in 01 four times to the left, the upper
four bits are shifted into the lower four bits. Now you can use our
"nibble" routine to evaluate it and then put the resulting ASCII character
in the buffer. You repeat this eight times and the whole long word has
been converted. You even have 01 looking exactly the way it did before
the conversion process began!

; (4.3.1B) bin-hex-2
hex long:

lea buffer,aO ;Pointer to the buffer
move.l it$12345678,dl ;Oata to convert
move it7,d3 ;Counter for the nibbles: 8-1

loop:
rol H,dl ;Move upper nibble into lower
move dl,d2 ;Write in 02
bsr nibble ;And convert it
move.b d2, (aO) + ;Character in buffer
dbra d3,loop ;Repeat 8 times
rts ;Finished!

nibble:
and it$ Of,d2 ;Just keep low byte
add it$30,d2 ;Add $30
cmp it$3a,d2 ;Was it a digit?
bcs ok ;Yes: done
add it7,d2 ;Else add 7

Abacus

4.3.2

4. Our First Programs

ok:
rts ;Done

buffer:
blk.b 9,0 ;Space for long word, null byte

end

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Next set a breakpoint at the ftrst
RTS, to set the breakpoint in AssemPro select the correct address with
the mouse and press the right-Amiga-B keys. Start the program and when
it is ftnished redisplay the output by selecting "Parameter-Oisplay-HEX­
dump" so you can examine the new buffer contents.

You'll ftnd that there's an error in the program-the buffer contains the
digits "56785678" instead of "12345678". Try to ftnd the error!

Have you found it? This is the sort of error that causes you to start
pulling your hair out. This sort is hard to ftnd. The assembler assumes
that the rotation operation should be done on a word, because the ".1" was
left off. As a result, only the lower word of 01 was rotated-so you get
the same value twice. If you change it to "rol.l", things work just right.

This error shows how easy it is to convert the program above into one
that converts four digit hex numbers into ASCII characters. Just leave off
the ".1" on the "rol" command and change the counter from seven to three.
The program is done.

Now for a little homework: change the program so that it can handle six
digit hex numbers (01 doesn't necessarily have to stay the same ...)!

Now let's look at a different conversion problem: converting a four digit
decimal number.

Converting Decimal to ASCII

It's not quite as easy to convert to decimal as hex. You can't group the
bits to form individual digits. You need to use another method.

Let's look at how a decimal number is constructed. In a four digit num­
ber, the highest place is the thousand's place, the next is the hundred's
place, etc ...

73

4. Our First Programs Amiga Machine Language

74

If you have the value in a register and divide by 1000, you'll get the value
that goes in the highest place in the decimal number. Since the machine
language command DIY not only gives us the result of division but also
gives us the remainder, you can work with the remainder quite easily.
You divide the remainder by 100 to find the hundred's place, divide the
remainder of this by ten and get the ten's place, and the fmal remainder is
the one's place.

This isn't so hard after all! Here's the program that follows the steps
above to fill the buffer with Dl 's ASCII value.

main:
lea buffer,aO
move #1234,dl
jsr deci 4
illegal

deci 4:

divu #lOOO,dl
bsr digit

divu #100,d1
bsr digit

divu #lO,dl
bsr digit

digit:
add #$30,d1
move.b dl, (aO) +
clr dl
swap dl
rts

buffer:blk.b 5,0

end

;Pointer to the bUffer
;Number to convert
;test subroutine
;room for break point

;Subroutine - four digit numbers

;Oivide by 1000
;Evaluate result-move remainder

;Oivide by 100
;Evaluate result and move
remainder
;Oivide by 10
;Evaluate result-move remainder

;Evaluate the remainder directly

;Convert result into ASCII
;Move it into buffer
;Erase lower word
;Move the remainder down
;Return

;Reserve bytes for result

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Next set a breakpoint at the illegal
instruction. To set the breakpoint in AssemPro select the correct address
with the mouse and press the right-Amiga-B keys. This break point stops
the program. Start the program and when it is finished redisplay the out­
put by selecting "Parameter-Display-HEX-dump" so you can examine the
ASCII values now in the buffer.

You use a little trick in this program that is typical for machine language
programming. After calling "digit" three times from the subroutine

Abacus

4.3.3

4. Our First Programs

"dec i_ 4", you go right into the "digit" subroutine. You don't use a BSR
or JSR command. Once the processor hits the RTS command, it returns
to the main program, not the "deci_ 4" subroutine. Doing this, you save a
fourth "bsr digit" command and an "rts" command for the "deci_ 4"
routine.

Try the program out Make sure that you use values that are smaller than
9999, because otherwise strange things can happen.

Now let's reverse what you've been doing and convert strings into binary
numbers.

Converting ASCII to hex

In a string, each hex digit represents a half byte. You just need to write a
program that exactly reverses what the hex conversion program did.

You have two choices

1. The number of hex digits is known in advance
2. The number is unknown

The first is easier to program, but has the disadvantage that if, you
assume the strings are four digits in length and want to enter the value 1,
you must enter 0001. That is rather awkward, so you'll use the second
method.

Let's convert a single digit first. You' 11 pass a pointer to this digit in
address register AO. You want the binary value to come back in data
register DO.

The program looks like this:

move.l #string,aO
jsr nibblein
nop

nibblein:
clr.l dO
move.b (aO) +,dO
sub #'A',dO
bcc ischar

add #7,dO
ischar:

add #10,dO

; this example
; test routine
; set breakpoint here

;* Convert the nibble from (AO)
;Erase DO
;Get digit, increment AO
;Subtract $41
;No problem: In the range A-F

;Else correct value

;Correct value

75

4. Our First Programs Amiga Machine Language

76

rts

string: dc.b 'B' ,0 ;character to convert

end

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Nex.t set a breakpoint at the first
NOP, to set the breakpoint in AssemPro select the correct address with
the mouse and press the right-Amiga-B keys. Start the program and watch
the contents of DO.

Let's see how the program works. AO points to a memory location that
contains the character HB" that is represented by the ASCII value $42.
This number is loaded into DO right after this register is erased.

After subtracting $41, you end up with the value $1. Now you're almost
done. Before returning to the main program, you add 10 to get the correct
value 11, $B.

If the buffer has a digit in it, the subtraction causes the register to become
negative. The C flag is set. Let's take the digit 5 as an ex.ample.

The ASCII value of 5 is $35. After subtracting $41, you end up with -12
and the C flag is set. In this case, you won't branch with the BCC com­
mand. Instead you'll add 7 to get -5. Then 10 is added, and you end up
with five. Done!

This routine has a disadvantage. If an illegal character is given, one that
doesn't represent a hex digit, you'll get some nonsense result. Let's ig­
nore error checking for the moment though.

Let's go on to multi-digit hex numbers. The first digit that you convert
has the highest value and thus represents the highest nibble. To allow for
this and to allow for an arbitrarily long number (actually not arbitrarily
long, the number should fit in a long word-so it can only be eight digits
long), you'll use a trick.

Take a look at the whole program. It handles the calculations and puts the
result in Dl. It assumes that AO is a pointer to a string and that this
string is ended by a null byte.

hexln:
clr.l d1
move.l #string, aO
jsr hexinloop
nop

hexinloop:

;converting a hex number
;First erase 01
;Address of the string in AO
; test s ubrout ine
; set break point here

Abacus 4. Our First Programs

tst.b (aO) ;Test digit
beq hexinok ;Zero, then done
bsr nibblein ;Convert digit
ls1.1 #4,dl ;Shift result
or.b dO,d1 ;Insert nibble
bra hexin100p ;And continue

hexinok:
rts

nibblein: ;Convert the nibble from (AO)

clr.l dO ;Erase DO
move.b (aO)+,dO ;Get digit, increment AO
sub #'A',dO ;Subtract $41
bcc ischar ;No problem: In the range A-F
add #7,dO ;Else correct value

ischar:
add #lO,dO ;Correct value
rts

string: DC.B "S6789ABC',OO ;8 digit string, null byte
; to be converted

end

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Next set a breakpoint at the NOP,
to set the breakpoint in AssemPro select the correct address with the
mouse and press the right-Amiga-B keys. Start the program and watch the
contents of Dl, the hex value is placed in this register.

The trick is to shift left four times, to shift one nibble. In this way, the
place of the last digit is incremented by one and there is room for the
nibble that comes back from the "nibblein" routine. The program uses the
TST.B instruction to check for the null byte at the end of the string,
when it encounters the null byte the program ends. The result is in the
Dllong word already!

To do son:<! error checking, you need to make some changes in the pro­
gram. You'll do this right after you come back from the "nibblein"
routine with the value of the current character.

If the value in DO is bigger than $F, there is an error. You can detect this
in several ways. You chose the simplest one-you'll use CMP #$10,DO
to compare DO with $10. If it is smaller, then the C flag is set (since
CMP uses subtraction) and everything is fine. If C is zero, there is an
error.

You can use this trick to skip the test for a null byte, since it's an invalid
character as well. The program looks like this:

77

4. Our First Programs Amiga Machine Language

4.3.4

78

; (4 3 3C) hex-conv2
hex in:

clLl dl
move.l #string, aO
jsr hexinloop
nop

hexinloop:
bsr nibblein
cmp $lO,dO
bcc hexinok
ls1.1 #4,dl
OLb dO,dl
bra hexinloop

hexinok:
rts

nibblein:
clLl dO
move.b (aO)+,dO
sub # 'A',dO
bcc ischar
add #7,dO

ischar:
add #lO,dO
rts

string: DC.B "56789ABC',OO

end

Optional disk name
;Converting a hex number
;First erase D1
;Address of the string in AO
; test subroutine
; set break point here

;Convert digit
;Test if good
;No, then done
;Shift result
;Insert nibble
;And continue

;Convert the nibble from (AO)
;Erase DO
;Get digit, increment AO
;Subtract $41
;No problem: In the range A-F
;Else correct value

;Correct value

;8 digit string ending with a
; null byte to be converted

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Next set a breakpoint at the NOP,
to set the breakpoint in AssemPro select the correct address with the
mouse and press the right-Arniga-B keys. Start the program and watch the
contents of Dl, the hex value is placed in this register.

This is the method for converting hex to binary. If you convert decimal to
binary, the conversion is not much harder.

Converting ASCII to decimal

You can use a very similar method to the one used above. Since you're
not sure how many digits there are, you'll use a similar method for
putting digits of a number in the next place up. You can't do this with
shifting, but you can multiply by 10 and add the value of the digit.

Here's the program for converting decimal numbers.

Abacus

decin:
clr.l
move.l
jsr
nop

decinloop:
bsr
cmp
bcc
mulu
add
bra

decinok:
rts

digit in:

dl
#string,aO
decinloop

digitin
#lO,dO
decinok
#lO,dl
dO,d1
decinloop

clr.l dO
move.b (aO) +,dO
sub #' 0' ,dO
rts

string: dc.b '123456'

end

4. Our First Programs

;Converting a decimal number
;First erase D1
;The string to convert
;Test subroutine
;Breakpoint here

;Convert digit
;Test, if valid
;No, then done
;Shift result
;Insert nibble
;And continue

;End of conversion

;Converting the nibble from (AO)

;Erase DO
;Get digit, increment AO
;Subtract $30

;ASCII decimal string to convert

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Next set a breakpoint at the NOP,
to set the breakpoint in AssemPro select the correct address with the
mouse and press the right-Amiga-B keys. Select "Parameter-Output
numbers-Decimal" so the registers are displayed as decimal numbers.
Then start the program and watch the contents ofDl, the decimal value is
placed in this register.

This program can ~ convert numbers up to 655350, although the hex
conversion routine can go higher. That's because the MULU command
can only multiply 16-bit words. The last multiplication that can be done
correctly is $FFFF*1O--65535*1O, which gives us the value 655350.
Normally this is a large enough range, so you won't complicate the pro­
gram further.

79

Chapter 5

Hardware
Registers

Abacus

5

s. Hardware Registers

Hardware Registers

You can get information about hardware functions without using library
functions. You can use the hardware registers instead. These are memory
locations at particular addresses that are neither in RAM nor in ROM.
They are direct interfaces between the processor and its peripheral devices.

Each device has a number of hardware registers that the processor accesses
to control graphics, sound and input/output. There are lots of possibilities
for assembly language programmers. We'll only be able to go into a few
examples.

The registers are generally used in byte-wise fashion. You'll find an
example in the next chapter.

5 . 1 Checking for special keys

Load AssemPro and enter the debugger, select "Parameter-Display-From
Address" and enter $BFECOO. Next select "Parameter-Display-HEX­
Dump" to display the memory. (To use the SEKA assembler or a similar
monitor program, enter "q $bfecOO".)

You'll see a byte-wise listing of the addresses starting at $BFECOO in
which two bytes always repeat. These two bytes represent the status of
two hardware registers.

The mirroring occurs because not all the address bits are used in decoding
the address. In addressing this register, only the upper two bytes of the
address and the low bit, bit 0, are used. The address of the two registers
goes like this: $BFECxx, where the lower address byte xx doesn't contain
any information in bits 1-7. Only bit 0 contains information about the
desired register. You'll find this odd form of addressing with most hard­
ware registers.

Let's look at the information in these registers. Let's look at the second
register, $BFECOI. Hold down the <Alt> key and select "Parameter­
Display-REX-Dump" to re-display the screen. (SEKA owners must enter
"q $bfecOO" and press the <Alt> key right after pressing the <Return>

83

5. Hardware Registers Amlga Machine Language

84

key.) You'll see that contents of every two bytes ($BFECOl, $BFEC03,
etc ...) have been changed to $37. This is the status of the special keys.
This is also true for the other special keys. The following keys produce
the bytes:

Shift left $3F
Shift right $3D
Control $39
Alternate $37
}uTUgaleft $33
}uTUga right $31

You can use this register to have a machine language program check if
one of these keys was pressed and then respond by calling or ending a
function. A program section might look like this:

skeys = $bfecOl

cmp.b #$37,skeys
beq funct ionl
cmp.b #$31,skeys
beq function2

;Alternate pres sed?
;Yes!
;or right Amiga?
;Yes!
;and so on ...

Abacus 5. Hardware Registers

5.2 Timing

If you want to fmd out how much time elapsed between two events, you
can use a hardware register to keep track of time quicldy and precisely.
The Amiga contains just such a time keeper: the I/O port componant.
This chip has a 24 bit wide counter that has a 60 Hertz clock.

These 24 bits can't be read at once, for instance with a MOVE.L com­
mand, because the register is divided into three bytes. The low byte is at
address $BFE801, the middle at $BFE901, and the high byte with bits 16-
23 at $BFEAOI.

Here's an example of a way to use this register: finding out how long a
subroutine takes to run.

test:
bsr
move.l
bsr
bsr
sub.l

nop

routine:
move

loop:
dbra
rts

gettime:
move.b
ls1.1
ls1.1
move.b
Is1.1
ls1.1
move.b
rts

gettime
d7,d6
routine
gettime
d6,d7

#500,dO

dO,loop

$bfeaOl,d7
#4,d7
#4,d7
$bfe901,d7
H,d7
#4,d7
$bfe801,d7

;Put current timein D7
;Save it in D6
;Routine to be timed
;Get the time again
;Elapsed time in
;1/50 seconds is in D7!
; set breakpoint here to stop

; test routine
; delay counter

;count down

;HI-Byte in DO
;Shift twice by 4 bits,
;(8 bits shifted)
;Get MID-Byte

;Shift again
;Get the LO-Byte
;Done

85

5. Hardware Registers Amiga Machine Language

5. 3 Reading the mouse joystick

86

There are two hardware registers for the mouse and the joystick. They
contain the state (or the position) of these input devices. It's interesting
that the same port is used with both the mouse and the joystick even
though they work completely different.

The joystick has four switches that are closed during movement and give
off a potential (-) that is related to the movement of the joystick/mouse.
The mouse's movements give off lots of quick signals-two for horizon­
tal and two for vertical movement.

The computer must keep an eye on the ports so that it can evaluate the
signals and calculate the new mouse position. This isn't the work of the
processor though; it already has too much to do.

You find the status of the mouse/joystick port at address $DFFOOA for
port 1 and $DFFOOC for port 2. The information in these words is for
vertical mouse movement in the lower byte and for horizontal movement
in the upper byte.

AssemPro owners be careful! Don't read these addresses, because for some
reason that causes the computer to crash. This looks interesting (the
screen begins to dance), but you can only recover by pressing <Reset>
and loosing all of your data.

To read this register, let's write a short program.

;(S.3A) mouse

test:
jsr
jmp
nop

joy $dffOOa
run:

move
move
jmp

end

run
test

joy,d6
joy+2,d 7
run

;Test subroutine
;continute until broken
;Breakpoint here

;Oata Item 1 in 06
;Oata Item 2 in 07
;rt s for Seka and other

Abacus S. Hardware Registers

If you assemble the program and start Breakable in the debugger (SEKA -
"j run"), 06 and 07 contain the contents of the two registers. Move the
mouse a bit and watch the register contents.

As you see, the value in 06 is different. If you just move the mouse
horizontally, only the lower byte's value is different, if just moved ver­
tically only the upper byte is different.

You are not getting the absolute position of the mouse pointer on the
screen. You can see that easily by moving the mouse into the upper left
comer, then reading the value by restarting the program, and then move
the mouse left again. As you can see, the register's contents are always
relative.

Change the program as follows:

; (S.3B) mouse difference

test:
jsr run ;Test subroutine
jrnp test ;continute until broken
nop ;Breakpoint here

joy $dffOOa
run:

move d7,d6 ;Oldposition in D6
move joy,d7 ;Newposition in 07
sub d7,d6 ;Oifference in 06
jrnp run ;rts for Seka and other

end

Start Breakable (right-Arniga-A) in the AssemPro debugger and watch 06,
the result is zero or 07. (SEKA owners have to start the program two
times. The result in 06 is zero.) If you move the mouse, 06 contains the
difference between the old and new positions since the start. You'll find
the vertical and horizontal position of the mouse relative to the last time
you looked. In this way, you can use this register to find the relative
mouse movement between two checks.

Now to check the joysticks. Put a joystick in port 2 and change the
address $OFFOOA to $OFFOOC in the program. Start Breakable in the
AssemPro debugger and watch 06, the result is zero or 07. (SEKA
owners have to start the program two times. The result in D6 is zero.)

Move the joystick up. You'll get the value $FFOO. One was subtracted
from the upper byte. Let the joystick loose. This time you get the value
$10O---Dne is added. You'll get the same effect when you move the joy­
stick left-after you let go, one is subtracted.

87

5. Hardware Registers Amiga Machine Language

88

The individual movements and their effects on the joystick program are:

up
down
left
right

$FFOO
$FFFF
$0100
$0001

HI-Byte -1
W-Byte -1
HI-Byte +1
LO-Byte +1

These values aren't terribly reliable. If you move the joystick a lot and
then look at the value, you'll find a crazy value in D6. This is because
the input driver thinks that a mouse is attached. Nevertheless, this is the
quickest way to read a joystick. In this way, an external device that gives
off evaluatable TIL signals can be connected to the port and watched by a
machine language program.

Now you just need to find out whether the fire button has been pressed,
and you'll know how to get all the information you need from the
joystick. The button's state is in bit 7 of the byte that is in memory
location $BFEOOI. If the bit is set. the button wasn't pressed. That's true
for the joystick connected to port 2. Bit 6 of this byte contains the
button's state when the joystick is in port 1 or the state of the left mouse
button.

Let's stay on port 2. You can test bit 7 to execute a function when the
joystick button is pressed without any problems. Bit 7 is the sign bit.
You can use this program segment:

tst.b $bfeOOI
bpI fire

;Was f ire button 2 hi t?
;Yes I Branch

The TST.B instruction tests the addressed byte and sets the Z and the N
flag. If the N flag is set, you know that bit 7 of the tested byte is set.
Since the fire button turns on LO potential, the bit is erased when the
button is pressed. The N flag works that way with the TST command as
well. The BPL command in the program above branches if the button was
pressed. The PL stands for plus and it is set when the sign bit is cleared.

Here is the complete program to check the fire button and joystick
difference:

; (S.3C) fire button & joy difference

test:
jsr run
tst.b $bfeOOI
bpI fire
jrnp test

joy $dffOOa
run:

;Test subroutine
;Was fire button 2 hit?
;Yes I Branch
;continute until broken

Abacus

move
move
sub
jmp

fire:
nop

end

d7,dS
joy,d7
d7,d6
run

S. Hardware Registers

;Old position in D6
;New position in D7
;Difference in D6
;rts for Seka and other

;Breakpoint here

89

s. Hardware Registers Amiga Machine Language

5 . 4 Tone production

90

It's fun to make noises and sounds. The Amiga let's you use Audio
Devices and various 1\0 structures to play tones, noises and/or music
pieces in the background. You'll leave this method to C or BASIC pro­
grammers, since you can use short machine language programs to directly
program the audio hardware.

The Paula chip has all the capabilities needed for tone production. This
chip can be accessed using the hardware registers of the processor. No
library of any high level language can do more than you can-program
the chip.

How does it work? Since the disk uses Direct Memory Access (DMA) to
get information, you just need to tell it where to look for the tone or tone
sequences that you would like played. You also need to tell it how to
interpret the data.

Let's start with the easiest case-producing a constant tone. A tone like
this consists of a single oscillation that is repeated over and over. If you
make a diagram of the oscillation, you see the wave form of the oscilla­
tion. There are several standard waves: sine, square, triangle and saw
tooth. The simplest is the square wave.

To produce a square wave, you just need to turn the loud speaker on and
off. The frequency that occurs here is the frequency of the tone.

You want to produce such a tone using the Amiga. First you need to
make a table that contains the amplitude of the tone you wish to produce.
For a square wave, you only need two entries in the table, a large and a
small value. Since the sound chip in the Amiga has amplitude values
between -128 and +127, our table looks like this:

soundtab:
dc.b -100,100

You need to give the address of the table to the sound chip. You have four
choices, since the Amiga has four sound channels. The address of the
hardware register in which the table address for channel 0 must be written
is $DFFOAO; for channel 1 it is $DFFOBO; for channel 2 it's $DFFOCO;
for channel 3 it's $DFFODO. For stereo output, channels 0 and 3 control

Abacus s. Hardware Registers

the left loud speaker. Channels 1 and 2 control the right loud speaker. For
example, choose channel 0 and write the following:

move.l itsoundtab,$DFFOAO ;Address of the table

Next, you need to tell the sound chip how many items there are in the
table. The data is read from beginning to end and sent to the loud speaker.
Once it reaches the end, it starts over at the beginning. Since the sound
chip gets this one word at a time, even though the data is in bytes, the
table must always have an even number of bytes. The length that you
give it is the number of words, the number of bytes/2.

You put the length for channel 0 in the register at address $DFFOA4 (for
channel xjust add x*$IO!):

move itl,$df fOa4 ;Length of table in words

Now you have to tell it how quickly to read the data and output it to the
loud speaker. This word determines the frequency. However, it does this
"backwards". The larger the value, the lower the frequency. Choose the
value 600 for this example:

move it600,$dffOa6 ;Read in rate

Now you need to decide the loudness level for the tone or noise. You have
65 different levels to choose from. Let's choose the middle level value 40
for our example.

move it40,$dffOa8 ;Loudness level

That's the data that the sound chip needs to produce the tone. However,
nothing happens yet. What next? The chip can't tell if the data that's in
the registers is valid, so it doesn't know if it should use the data.

You need to work with the DMA control register at address $DFF096 to
let it know. You only need six bits of this word for your purposes:

Bit 15 ($8000) If this bit is set, every bit that is written to this internal
register is set. Otherwise the bits are erased. Zero bits
aren't affected. This is very useful because this word
also contains DMA information for disk operations that
shouldn't be changed.

Bit 9 ($200) This bit makes it possible for the chip to access DMA
memory. If you want to start playing the tone, you
need to set this bit

Bits 0-3 Tum channel 0-3 on when the bits are set.

You'll start your tone by setting bits 15,9 and 0:

91

5. Hardware Registers Amiga Machine Language

92

move #$8000+$200+1,$dff096 ;Start DMA

Here's an example of tone production-this time with a tone using a sine
wave:

;** Sound generation using hardware registers ** (S.SA)
ctlw = $dff096 ;DMA Control
cOthi = $dffOaO ;Table address HI
cOtlo = cOthi+2
cOtl = cOthi+4
cOper = cOthi+6
cOvol = cOthi+8
run:

data
table:

move.l #table,cOthi
move #8,cOtl
move # 4 0 O,cOper
move #40,cOvol
move #$8201,ctlw
rts

dc"b -40,-70,-40,0,40,70,40,0

end

;Table address LO
;Table length
;Read in Rate
;Loudness level
;* Produce a simple tone
;Table beginning
;Table length--8 words
;Read in rate
;Loudness level (Volume)
;DMA/Start Sound

;>SOOK place in CHIP memory
;Sound table: sine

To test this subroutine, use AssemPro to assemble the routine, save the
program and load it into the debugger. Next set a breakpoint at the RTS,
to set the breakpoint in AssemPro select the correct address with the
mouse and press the right-Amiga-B keys. Start the program and listen to
the tone. You need another routine to tum the tone off, tum your sound
down for now.

To tum the tone off, you just need to erase bit 0 of the DMA control
register. To do this, you just need to write a 0 in bit 15 and all the set
bits in this register are erased. To erase bit 0, just write a one to the
memory location: bit 15=0 => bit 0 is erased. Here's a small routine to
stop the tone coming from channel 0:

still:
move
rts

#l,ctlw
;* Turn off tone
;Turn off channell

Now let's use the routine in a program to produce a short peep tone, that
you could, for instance, use as a key click:

;** Producing a peep tone * *
ctlw = $dff096
cOt hi ~ $dffOaO
cOtlo = cOthi+2
cOtl = cOthi+4
cOper = cOthi+6

;DMA Control
;HI table address
;LO table address
;Table length
;Read in rate

Abacus s. Hardware Registers

cOvol ~ cOthi+8
beep:

loop:

still:

move.l #table,cOthi
move #8,cOtl
move #400,cOper
move #65,cOvol
move #$820l,ctlw
move.l #20 OOO,dO

dbra dO,loop

move #l,ctlw
rts

;Volume
;* Produce a short peep tone
;Table beginning
;Table length
;Read in rate
;Volume
;Start DMA (Sound)
;Delay counter

;Count down

;Turn off tone

table: ;Sound table
dc.b 40,70,90,100,90,70,40,0,-4,0
end

You can play up to four tones at the same time in such a way that they
are independent of each other. The Amiga also offers another method of
making the sound more interesting: you can modulate the tone.

Let's produce a siren tone. You could do this by figuring out the entire
sequence and programming it. However, as you can well imagine, that's a
lot of work.

It's much easier to use two tone channels. Let's use channell for the
base tone and channel 0 for its modulation. Channel 0 needs to hold the
envelope of the siren tone. It needs to give the expanding and contracting
of the tone at the right speed.

You then have two ways that you can have channel zero work with
channel one. You can control the volume via channel 0, the read in rate
(frequency), or both. For our example, you'll use the frequency modula­
tion.

Change the program as follows:

;** Modulated sound generation via hardware registers **
ctlw ~ $dff096 ;DMA Control
adcon ~ $dff0ge ;Audio/Disk Control
cOthi ~·$dffOaO ;HI table address
cOtlo = cOthi+2
cOtl = cOthi+4
cOper ~ cOthi+6
cOval ~ cOthi+8
run:

;LO table address
;Table length
;Read in rate
;Volume

move.l #table,cOthi+16;Table start for channell
move #8,cOtl+16 ;Table length -- 8 words
move #300,cOper+16 ;Read in rate
move #40,cOvol+16 ;Volume

move.l #table2,cOthi ;Table start for channel 0

93

S. Hardware Registers Amiga Machine Language

94

move #8,cOtl ;Table length
move # 60000,cOper ;Read in rate
move #30,cOvol ;Volume

muve #$8010,adcon ;Modulation mode: FM
move # $82 ° 3,ct lw ;Start DMA
rts

still: ;* Turn off tone
move #$10,adcon ;No more modulat ion s
move #3,ctlw ;Turn off channels
rts

table: ;Data for basic tone
dc.b - 40,-70,- 90,-1 ° 0,- 90,-7 0,-4 0,0
dc.b 40,70,90,100,90,70,40,0
table2: ;Data for Modulation
dc.w 400,430,470,5 ° 0,5 3 0,500,470,43 °

end

When you start the program, you'll hear a siren. You can change this
tone to your heart's content.

Did you notice the added "adcon" register. This register controls the
modulation of the audio channel as well as handling disk functions. The
same technique is used here as for the DMA control register, bits can only
be set if bit 15 is. As a result, you don't have to worry about the disk
bits. 1'd recommend against experimentation.

Control bit 15 isn't the only one of interest to you. You can also use bits
0-7, because they determine which audio channel modulates another
channel. There is a restriction, though. A channel can only modulate the
next higher numbered channel. For this reason, you use channel 1 for the
basic tone and channel 0 for the modulation in the example. You can't,
for example, modulate channel three with channel zero. Channel 3 can't
be used to modulate any other channel.

Here is an overview of bits 0-7 of the "adcon" register.

Bit Function
o Channel 0 modulates the volume of channel 1
1 Channel 1 modulates the volume of channel 2
2 Channel 2 modulates the volume of channel 3
3 Tum of channel 3
4 Channel 0 modulates the frequency of channell
5 Channell modulates the frequency of channel 2
6 Channel 2 modulates the frequency of channel 3
7 Tum off channel 3

Abacus s. Hardware Registers

In the example, you set bit 4, which put channel 0 in charge of channel
one's frequency modulations.

When you've chosen a channel for use in modulating another channel,
some of the parameters of the channel change. You don't need to give
volume for this channel, so you can omit it. Now the table's data is
looked at as words instead of as bytes. These words are read into the
register of the modulated register at a predetermined rate. The Read in Rate
Register determines the rate.

If you want to modulate the frequency and the volume of another channel
(In the example, set bits 0 and 4 of "adcon"), the data is interpreted a little
differently. The first word in the table is the volume, the second is the
read in rate, and so on. It alternates back and forth. In this way, you can,
for instance, produce the siren tone.

95

5. Hardware Registers Amlga Machine Language

5.5 Hardware registers overview

96

The following tables should give you an overview of the most important
hardware registers. There's not enough room to describe each register, so
I'd recommend getting a hold of the appropriate technical literature. If you
experiment with these registers, you should keep in mind that this can
cause the computer to crash. Save your data to disk and then take the disk
out of the drive, because you might cause the disk drive to execute some
wierd functions.

Let's start with the PIAs. This covers the PIA type 8520. You should
keep in mind that some functons and connection of the 8520 are inte­
grated into the Amiga and so there are limitations on what you can do
with the PIAs.

PIA A PIAB Register's Meaning
BFEOO1 BFEOOO Data register A
BFE101 BFE100 Data register B
BFE201 BFE200 Data direction register A
BFE301 BFE300 Data direction register B
BFE401 BFE400 Timer ALO
BFE501 BFE500 Timer AHI
BFE601 BFE600 TimerB LO
BFE701 BFE700 TimerB HI
BFE801 BFE800 Event register Bits 0-7
BFE901 BFE900 Event register Bits 8-15
BFEAOI BFEAOO Event register Bits 16-23
BFEB01 BFEBOO Unused
BFEC01 BFECOO Serial data register
BFED01 BFEDOO Interrupt control register
BFEE01 BFEEOO Control register A
BFEF01 BFEFOO Control register B

Some internal meanings:

$BFElOl
$BFE301
$BFEC01

Data register for the parallel interface
Data direction register for the parallel interface
State of the keyboard, contains the last special key
pressed (Shift, Alternate, Control, Arniga)

Abacus 5. Hardware Registers

Now come the registers that are used for tone production. The first two
registers should be treated especially carefully-if they are used wrong,
very nasty effects can occur.

These registers can be either read or written only. This information is
included under RIW in the table.

Address R/W Meaning
DFF096 W Write DMA Control
DFFOO2 R Read DMA Control and Blitter Status
-- Audio channel 0 --
DFFOAA W Data register
DFFOAO W Pointer to table beginning Bits 16-18
DFFOA2 W Pointer to table beginning Bits 0-15
DFFOA4 W Table length
DFFOA6 W Read in Rate I Period
DFFOA8 W Volume
-- Audio channel 1 --
DFFOBA W Data register
DFFOBO W Pointer to table beginning Bits 16-18
DFFOB2 W Pointer to table beginning Bits 0-15
DFFOB4 W Table length
DFFOB6 W Read in Rate I Period
DFFOB8 W Volume
-- Audio channel 2 --
DFFOCA W Data register
DFFOCO W Pointer to table beginning Bits 16-18
DFFOC2 W Pointer to table beginning Bits 0-15
DFFOC4 W Table length
DFFOC6 W Read in Rate I Period
DFFOC8 W Volume
-- Audio channel 3 --
DFFODA W Data register
DFFODO W Pointer to table beginning Bits 16-18
DFFOD2 W Pointer to table beginning Bits 0-15
DFFOD4 W Table length
DFFOD6 W Read in Rate I Period
DFFOD8 W Volume

97

5. Hardware Registers Amlga Machine Language

98

Now for the registers that contain information about the joystick, mouse
or potentiometer. These addresses have been gone over in part previously.

Address RlW Mea ling
DFFOOA R Joystick/Mouse Port 1
DFFOOC R Joystick/MousePort 2
DFF012 R Potentiometer pair 1 Counter
DFF014 R Potentiometer pair 2 Counter
DFF018 R Potentiometer connection
DFF034 W Potentiometer port direction

Chapter 6

The Operating
System

Abacus 6. Amiga Operating System

6 The Operating System

Now let's take a step forward in your ability to write assembly language
programs. It's not enough to put a piece of text in memory someplace.
You want to be able to put it on the screen. Do you know how to write a
character on the screen? Do you know how to draw a window on the
screen that can be modified by the mouse? Actually, you don't have to
have terribly precise knowledge about such topics.

Fortunately, the Amiga's operating system supplies routines that take
care of common tasks like this. It can seem quite complicated due to the
number of routines necessary. These routines are in libraries. We'll look
at the libraries in some depth now.

6.1 Load libraries

exec. library

dos.library

Before you can use a library, it must be available. It has to be loaded into
memory. Unfortunately, the whole library must be loaded, even if you
only need one of the functions.

First you need to decide what the program must be able to do, so you can
see which libraries you'll need. For simple I/O text, you don't need a
library that contains routines for moving graphics!

There are a number of libraries on a normal Workbench disk. Here's an
overview of the names and the sort of functions they contain:

This library is needed to load the other libraries. It is already in memory
and doesn't need to be loaded. It's in charge of basic functions like reserv­
ing memory and working with I/O channels.

Contains all the functions for normal I/O operations, for instance screen
or disk access.

intuition.library Used for working with screens, windows, menus, etc ...

clist.library This contains routines for working with the Copper lists that are used for
controlling the screen.

101

6. Amiga Operating System Amiga Machine Language

console. library Contains graphics routines for text output in console windows.

disk/ont.library Used for working with the character fonts that are stored on the disk.

graphics. library This library contains functions to control the Blitter (or graphics) chip.
It's used for basic graphics functions.

icon. library Used in the development and use of Workbench symbols (icons).

layers. library Used for working with screen memory (layers).

mathffp.library Contains basic math floating point operations.

mathieeedoubbas .library

mathtrans.library

potgo.library

timer. library

Contains basic math functions for integers.

Contains higher level mathematical functions.

Used for evaluating analog input to the Amiga.

Contains routines for time critical programs. They can be used to pro­
gram exact time intervals.

translator.library Contains the single function "Translate", that translates normal text writ­
ten phonetically for the narrator, the speech synthesizer.

102

You can open (load) all these libraries of course. You should remember
that this takes time and memory. For this reason, you should always
think about which functions you need and which libraries they are in.

For example, let's say you want to write a program that does text input
loutput. You need the "dos.library", so it can be loaded.

The "exec.library" is in charge of loading. This library contains the Open­
Lib function that can be called once you've passed the needed parameters.
AssemPro Amiga includes all of the libraries necessary for the Amiga, it
also includes ftles that contain the offsets for the operating system calls.
The macros contained in AssemPro ease assembly language programming
considerably. To make the programs in this book useful to the largest
audience the following examples are written for generic assemblers and do
not include AssemPro's macros. We have used the AssemPro ll...ABEL
and the macros INIT AMIGA and EXIT AMIGA so AssemPro owners - -
can start the programs from the desktop. If you are using a different
assembler check your documentation for instructions on linking
programs.)

Abacus 6. Amiga Operating System

6.2 Calling functions

Since this chapter is rather complex we'll first describe the fundamental
routines necessary to use the Amiga's operating system, after a decsrip­
tion a complete program is listed. Every library begins in memory with a
number of JMP commands. These JMPs branch to the routines that are in
the library. To call a function, you need to find the beginning of this
JMP table and call function x by going to the xth JMP command.
Usually you use an offset to get to the right JMP command. Normally,
you don't start at the beginning but at the end of the JMP table, so use
negative offsets.

It works out very easily. Now let's open the "dos.library" by using
"exec.library's" base address. This address is $000004. To call a function
from another library, you need to use another base address.

Now you need the offset for the function that you want. You want the
Open Lib function that has -408 as an offset. You'll find a list of func­
tion offsets in the appendix.

You need a pointer to the name of the library you are loading for the
OpenLib function (in this case "dos.library") and a long word in memory
that you can use to store the base address of the DOS library. You get
this back from the OpenLib function. You need to be sure to write the
library name in lowercase letters (dos.library), otherwise you can't open
it. I entered a name in capital letters once and spent a lot of time finding
this error.

The routine looks like this:

;** Load the DOS library' dos.library' (6.2A) **
ExecBase = 4 ;Base address of the EXEC

;library
OpenLib = -408 ;Offset from the OpenLib

;function

IoErr -132 ;Offset for IoErr information

init:
move.l ExecBase,a 6 ;Base address in A6
lea dosname,a1 ;Address of library name
moveq #O,dO ;Version number
jsr Open Lib (a6) ;Open DOS library
move.l dO,dosbase ;Save DOS base address

103

6. Amiga Operating System Amiga :\1achine Language

104

beq error ;If zero, then error!
;Your program goes here
;More program ...

error: ;Error
move.l dosbase,a6 ;Address of library name
jsr IoErr (a6) ;Call IoErr for error info
move.l dO,dS

;Your error routine goes here
rts

dosname: ;Name of the library to opened
dc.b 'dos.library',O,O
align

dosbase:
blk.l 1

end

;Seka uses - even
;Storage for DOS base address

This is the way to load the DOS library so that you can use it. All library
functions are called in this way. Parameters are put in registers and passed
to the function. When there is an error, when the function doesn't run
correctly, a zero is usually put in data register DO

Once your program is done with its work, you need to close the libraries
that are still open before you return to the eLI or Workbench. The
CloseLib function (offset -414) takes care of this job. This function is in
the EXEC library just like OpenLib. The only parameter it needs is the
base address of the library that is closed. To close "dos.library", do the
following:

CloseLib=-414, ; (6.2B)

move. 1 ExecBase,a6 ;EXEC base address
move.l dosbase,al ;DOS base address
jsr CloseLib (a6) ;Close library

Abacus 6. Amlga Operating System

6.3 Program in itialization

6.3.1

Before you can start a program, you need to initialize many things so that
the program can run.

Let's take an example program that does some text editing. A program
like this must be able to store text, so it needs to be able to access mem­
ory. It also needs to be able to accept keyboard input and to do screen
output, so it needs an output window.

To do this, you need to open one or more of the libraries that we talked
about earlier. Let's assume that you've loaded the DOS library, so that
you can do the next steps.

Reserve memory

There are several ways to get the operating system to assign you a chunk
of memory. You need to use one of them, so that during multitasking,
you don't have one program overwritting another programs memory area.

Let's look at the function that is normally used. This function is in the
resident EXEC library and has the name AllocMem (offset -$c6). It
reserves a memory area, using the value in 00 as the length. The address
that the memory area begins at is returned in the 00 data register. If it
returns zero, the program couldn't give you that much memory.

You can also use a mode word in D 1 to determine whether the memory
area that is reserved should be erased or not.

The routine looks like this:

ExecBase = 4
AllocMem = -$c6

move.l
move
move.l
jsr
move.l
beq

#number,dO
#mode,a6
ExecBase,a 6
AllocMem (a6)
dO,address
error

; (6.3.1A)

;Number of bytes to reserve
;Mode word
;OOS base address in A6
;Call function
;Savememory's start address
;Memory not reserved

105

6. Amfga Operating System Amiga Machine Language

6.3.2

106

The second way to reserve memory is to use the AllocAbs function (off­
set -$CC). This function in contrast to the AllocMem function reserves a
particular memory area. The DO register contains the number of bytes that
should be reserved. Address register Al contains the desired start address.
This function returns a zero in DO if the memory area can't be reserved.

ExeeBase = 4
AlloeAbs = - $ee

move.l #number,dO
lea address,al
move.l execbase,a 6
jsr AlloeAbs(a6)
tst.l dO
beq error

; (6.3.lb)

;Number of bytes to reserve
;Desired start address
;EXEC base address
;Reserve memory
;Everything OK?

;No!

When the program has done its work and must return to the eLI or the
Workbench, it needs to return the memory it has reserved to the system.
The FreeMem function (offset -$D2) handles this.

This function works like AllocAbs in that the number of bytes is put in
DO and the start address of the memory area is put in A 1. If you try to
free up a memory area that wasn't reserved, you usually crash the compu­
ter.

The routine to free up a memory area looks like this:

ExeeBase = 4
FreeMem = -$d2

move.l
lea
move.l
jsr
tst.l
beq

#number,dO
address,al
ExeeBase,a6
FreeMem (a6)
dO
error

; (6.3.lC)

;Number of bytes released
;Start address from AlloeAbs
;EXEC base address
;Free up memory
;Everything OK ?
;No !

Opening a simple window

The title of this chapter may sound a bit strange. However, the differences
between the two different methods of opening a window are so great that
they should be handled in separate chapters.

Abacus 6. Amlga Operating System

The method of opening a window presented here is very simple, but it
doesn't allow you to work with all of the gadgets. These gadgets include
the close symbol in the upper left comer of a window and the size symbol
in the lower left comer.

If you open the window in the simple manner, almost all the gadgets are
present. However, the close symbol is not. As a result, this method isn't
appropriate for every application. Now let's look at the method.

To open a window, use a function from the DOS library, so you need to
open the library ftrst (see the section "Load library"). This open function
is an all purpose function that can be used for many things. For this
reason, it makes good sense to put a "open" subroutine in your program.
You can use it a lot. Let's do the basic steps:

;** Load the DOS library 'dos.library' (6.3.2A) **
ExecBase ~ 4 ;Base address of the EXEC

library
OpenLib =-408
Open = -30

;Offset of OpenLib function
;Offset of the DOS function OPEN

init:

error:

move.l
lea
moveq
jsr

ExecBase,a6 ;Base address in A6
dosname (pc) ,al ;Address of library name
jlO,dO ;Version number: unimportant
OpenLib (a6) ;Call the function

move.l dO,dosbase ;Save DOS base address
;If zero, then error!
;More of your program
;Now open window, etc ...

beq error

;Error occured
;Your error routine

Openfile:
move.l
jsr
tst.l

dosbase,a6
Open (a6)
dO

;General OPEN function
;D05 base addres s in A6
;Call OPEN function
;Test if OK

rts ;Done, evaluate test later

dosname: ;Name of library to be opened
dc.b 'dos.l ibrary' ,0,0
align ;even

dosbase: ;Spot for DOS base address
blk.l 1

107

6. Amlga Operating System Amiga Machine Language

108

You called the Openfile routine, because the label "Open" is already being
used for the offset. This routine calls the Open function that is in the
DOS library.

That isn't everything. The function must be given some parameters so
that it knows what to open. The parameters are sent in registers Dl and
02.01 points to a definition block that specifies what should be opened.
You need to have a filename ended with a null byte there. Dl must be
passed as a long word like all addresses. D2 contains the mode that the
function should run in. There is an old (1005) and a new (1006) mode.
This number must be passed in 02's long word.

Here's an overview of how windows are opened. Fortunately, AmigaDOS
allows you to use input and and output channels in the same way. The
standard channels are disk files, the console (keyboard and screen), the
printer interface and the serial RS232 interface.

The console input/output is what you'll work with now. When you spec­
ify the console as the filename of the channel to be opened, a window is
opened automatically.

The name must begin with CON: to do this. It's similar to DFO: for disk
operations. A little more information about the window is still needed.

You need to specify the X and Y coordinates of the upper left and lower
right comers of the window as well as the name that should appear in the
title line of the window. A complete definition block for a window like
this would appear like the following line:

consolname: dc.b 'CON:0/IOO/640/100/** Window **',0

To open this window, the line above needs to be inserted in the following
program:

mode old=1005

lea consolname (pc) ,al
move.l #mode _ old,dO
bsr openfile
beq error
move.l dO,conhandle

rts

conhandle: dc.ll

;Console Definition
;mode
;Console open
;didn 't work

;Space f or handle

There are two points to clear up yet.

Abacus 6. Amlga Operating System

You should use mode_old as the mode when you open a window. Logi­
cally the window doesn't exist before opening so this seems weird but it
doesn't hurt anything.

The parameter that returns from "openfile" in DO is zero in the case of an
error, in the case that opening didn't work. Otherwise the value is the
identification number (handle number) of the opened channel. You need to
store it away, because every function that wants to use this channel must
give the handle number. In the example, you stored this number in the
"conhandle" long word.

As mentioned, the window you've opened doesn't have a close symbol,
but it can be made bigger and smaller and moved forward and back. The
manipulations that are carried out using the mouse are completely taken
care of by the Amiga (in contrast to the AT ARI ST where the program­
mer has to take care of these things).

An important function that uses the handle number is the one that closes
the channel (in your case the window). This function is also in the OOS
library and is called "Close". Its offset is -36 and it only needs one para­
meter; the handle number of the channel that is closed must be in the D 1
register.

After your work is done, you need to put the following lines in your
program to close the window:

Close = -36 ;(6.3.2C)

move.l conhandle,dl ;Handle number in Dl
move.l dosbase,a6 ;D05 base address in A6
jsr Close (a6) ;Close channel!

The window disappears!

Now for a few remarks about opening and closing the window in this
way. If you open several windows in the same way, you'll get several
windows and thus several handle numbers. In this way, you can put as
many windows on the screen as you'd like. You can do your work with
them and then close them indivudaIly.

Here is the complete program to open and close a simple window in
AssemPro format (We have used the AssemPro ll..ABEL and the macros
INIT AMIGA and EXIT AMIGA so AssemPro owners can start the - -
programs from the desktop. If you are using a different assembler check
your documentation for instructions on starting and exiting programs.):

109

6. Amiga Operating System

110

;***** 6.3.2 S.D. *****

Open Lib
closelib
;ExecBase

=-30-378
=-414
=4

* calls to Amiga Dos:

Open
Close
IoErr
mode old
alloc abs

=-30
=-30-6
=-132
= 1005
=-$cc

ILABEL Assempro:includes/Amiga.l

INIT AMIGA

run:

init:

test:

error:

qu:

bsr
bra

move.l

lea
moveq
jsr

init
test

ExecBase,a6

dosname (pc) ,a1
itO,dO
openlib (a6)

move.l dO,dosbase
beq error

lea
move.l
bsr
beq
move.l

rts

braqu

consolname(pc),a1
itmode old,dO
openfile
error
dO,conhandle

move.l dosbase,a6
jsr IoErr (a6)
move.l dO,dS

move.l it-1,d7

move.l conhandle,d1
move.l
jsr

dosbase,a6
close (a6)

Amiga Machine Language

; Defined in AssemPro
Macros

;AssemPro only

;AssemPro only

;Initialization
;System-Test

;System initialization
and open
;Number of Execute­
library

;Open DOS-Library

;Console Definition

;Console open

;quit and exit

;Flag

;Window close

Abacus 6. Amlga Operating System

move.l dosbase,al
move.l ExecBase,a6
jsr closelib (a6)

EXIT AMIGA

openfile:
move.l al,dl

move.l
move.l
jsr
tst.l
rts

dO,d2
dosbase,a6
open (a6)
dO

dosname: dc.b 'dos.library' ,0,0
Align.w

dosbase: dc.l 0

;DOS.Lib close

;AssemPro only

;Open File
;Pointer to 1/0-
Definition-Text

consolname: dc.b 'CON:0/l00/640/100/** CLI-Test ** ',0
Align.w

conhandle: dc.l 0

end

There is another way to open a window easily. Just use RAW: instead of
CON: as the channel designator. All the other parameters and operations
remain the same.

If you try them both out, you won't see any differences between the two
windows. They both look the same and can be worked with in the same
way with the mouse. The difference comes when you input to the win­
dow. In the RAW: window, the cursor keys are ignored. In the CON:
window and in CLI, they do work.

111

6. Amiga Operating System Amiga Machine Language

6.4 Input/Output

6.4.1

112

Besides managing and making calculations with data, the most important
work of a program is to input and output the data. There are many meth­
ods of data transfer in and out of the computer, for instance screen or
printer output, keyboard input, using the serial or the parallel interface,
tone or speech output and finally disk operations.

You want to learn about all these methods of data input and output for
programming and applications. We've written some programs as subrou­
tines that should be useful for later programs. It makes good sense to
make a library of these subroutines that can either be directly integrated in
a new program or linked to a program. At the end of the sections there is
a list of a complete program so you can see how the subroutines are used.

To prepare for input/output, you need to have data to output and space to
input data. To get this ready, you need a correct program beginning in
which the EXEC and DOS libraries are opened and memory is reserved.
After this, you begin most programs by outputing some text. The text
can be a program title or the instruction to input data over the keyboard.
Let's start looking at screen output.

Screen output

For a computer like the Amiga the first question is where should the
screen output be sent? The answer is simple for many computers; they
only have one screen, and output goes there. You need to specify which
window to write to when you use the Amiga, however.

There are two possibilities:

1. Output to the eLI window

2. Output to another window

The first possibility only exists if the program that makes the output was
started from CLIo If not, you need to open your own custom window for
your program. If so, you can use the window that was opened by the eLI
for output.

Abacus 6. Amiga Operating System

If you use the second method, you need to open a window. As you've al­
ready seen, there are three methods. For simple text and character output,
the difference between the three sorts of windows isn't very great. Here
you have a free hand in determining which sort of window to use. Let's
open a CON: window and put its handle number in "conhandle".

You've opened your window and want to output a title. You choose text
to output and then put it in memory using a code segment like this:

title: dc.b ,,** Welcome to this program! **"
titleend:
align ;even

The "align" (even) is a pseudo-op that should follow text when it is fol­
lowed by either word data or program lines. It causes the assembler to
insert a null byte if necessary to make the next address even.

To output this text you need another DOS function: Write. This has an
offset of -48 and needs three parameters:

In Dl the handle of an opened output channel that should be written to
(in your case, this is the handle number that you got back from
the Open command when you opened your window.).

In D2 the address of the text to be output (in the example, the address
"title").

In D3 the number of characters to be output in bytes.

To find the number of bytes to output, you need to count the number of
characters in your text. Use "titleend" to calculate this. Using this label,
the assembler can calculate the length of your text for itself (after all, why
should you count when you have a computer?) if you write:

move.l #titleend-title,d3

The advantage of specifying the length is that you can put control char­
acters between the beginning and end of the text. In this way, you can
execute certain functions using text output. You'll learn about the control
characters in a bit.

Here's the routine:

Write = -48

move.l dosbase,a6
move.l conhandle,dl
move.l #title,d2
move.l #titleend-title,d3
jsr Write (a6)

; (6.4.1A)
;Open window

;DOS base address
;Pass handle
;Text address
;And length
;Call function

113

6. Amiga Operating System Amlga Machine Language

pmsg

pline

pchar

perIJ

114

title: dc.b ,,** Welcome to this program! **"
titleend:
align ;event

end

You'll certainly use this function a lot. You'll often want to output just
one character though. To allow you to do this and similar text related
tasks, there are four subroutines, each of which do a different sort of out­
put:

Outputs the text from (D2) to the frrst null byte.

Is the same as the routine above except that the text is automatically fol­
lowed by a CR, the cursor is positioned at the beginning of the next line.

Outputs the character in DO.

Puts the cursor at the beginning of the next line.

Here's the subroutine package:

Write = -48 (6.4.1B

pline: ;* Output line and then a CR
bsr pmsg ;Output line

pcrlf: ;* Move cursor to the next line
move #lO,dO ;Line feed
bsr pchar ;Output
move #l3,dO ;and CR

pchar: ;* Output character in 00
move.b dO,outline ;Character in output buffer
move.l *out line,d2 ;Address of the character

pmsg: ;*Output line (02) up to null
move.l d2,aO ;Address in AO
clr d3 ;Length = 0

ploop:
tst.b (aO)+ ;Null byte ?
beq pmsg2 ;Yes: length found
addq.l *l,d3 ;Else Length+l
bra ploop ;And continue looking

pmsg2:
move.l dosbase,a6 ;005 base address in A6
move.l conhandle,dl ;Our window handle
jsr Write (a6) ;Call Write function
rts ;Oone !

outline: dc.w 0 ;Output buffer for 'pchar'
conhandle: dc.lO ;Window's handle

Abac'lS 6. Amiga Operating System

Here is an example program to open and close a simple window and out­
put a text message in AssemPro format (We have used the AssemPro
macros INIT AMIGA and EXIT AMIGA so AssemPro owners can start - -
the program from the desktop. If you are using a different assembler check
your documentat;on for instructions on starting and exiting programs.):

Here is the complete program in AssemPro format:

;***** 6.4.1C.asm S.D.

ClpenLib
closelib

~-3C1-378

=-414
;ExecBase =4

* calls to Amiga Dos:

Open =-30
Close =-30-6
Write =-48
IoErr =-132
mode old = 1005
alloc abs =-$cc

; Defined in AssemPro
;Macros

ILABEL AssemPro:includes/Amiga.l ;AssemPro only

INIT AMIGA -

run:
bsr init
bsr test
nop
bra qu

test:
move.] #title,dO
bsr pmsg
bsr pcrlf
bsr pcrlf

rts

;AssemPro only

;Initialization
;Sy stem-Test

;quit and exit

init: ;System initialization
and open

move.l

lea
moveq
jsr
move.l
beq

ExecBase,a 6

dosname (pc) ,al
#O,dO
openlib (a6)
dO,dosbase
errur

;Number of Execute­
library

;Open DOS-Library

115

6. Amiga Operating System Amiga Machine Language

lea consolname (pc) ,al ;Console Definition
move.l lImode old,dO
bsr openfile ;Console open
beq error
move.l dO,conhandle

rts

pmsg: ;Print message (dO)
movem.l dO-d7/aO-a6,- (sp)
move.l dO,aO
move.l aO,d2
clr.l d3

ploop:
tst.b (aO) +
beq pmsg2
addq.l #l,d3
bra ploop ;length calculate

pmsg2:
move.l conhandle,dl
move.! dosbase,a6
jsr write (a6)
movem.l (sp)+,dO-d7/aO-a6
rts

pcrlf:
move lIIO,dO
bsr pchar
move #l3,dO

pchar: ;output char in D)
movem.l dO-d7/aO-a6,- (sp) ;save all
move.l conhandle,d 1

pchl:
lea outline,al
move.b dO,(al)
move.l al,d2
move.l II l,d3 ;1 let ter
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/aO-a6 ;restore all
rts

error:
move.l dosbase,a6
jsr IoErr (a6)
move.l dO,dS

move.l #-l,d7 ;Flag
qu:

move.l conhandle,dl ;Window close
move.l dosbase,a6
jsr close (a6)

move.l dosbase,al ;DOS.Lib close

116

Abacus 6. Amlga Operating System

move.l ExecBase,a 6
jsr closelib (a6)

EXIT AMIGA

openfile:
move.l al,dl

move.l
move.l
jsr
tst.l
rts

dO,d2
dosbase,a6
open (a6)
dO

dosname: dc.b 'dos.library',O,O
Align.w

dosbase: dc.l 0

;AssemPro only

;Open File
;Pointer to 1/0-
Definition-Text

consolname: dc.b 'CON:O/IOO/640/100/** CLI-Test ** ',0
Align.w

conhandle: dc.l 0
title:dc.b '**Weclometothisprogram! **,
titleend:

align
outline: dc.w 0

end
;Output buffer for pchar

Using this program, you can very easily put whatever you want in the
CON: window. These functions also work in a RAW: window. You
should rename "conhandle" as "rawhandle", so that you don't get things
mixed up later.

Let's stay with the CON: window. As mentioned earlier, you can output
special characters that execute functions or change parameters for output.
These characters are called control characters.

You've already learned about one of these control characters, Line Feed
($A). This character isn't just output; instead, it calls a function that
moves the cursor into the next line and moves the screen up. This is very
useful, but there are much more interesting control characters.

Here's a list of control characters that execute functions. These characters
are given in hex.

117

6. Amlga Operating System Amlga Machine Language

Control
Sequence

Control
Sequence
Introducer

118

Sequence
08
OA
OB
OC
OD
OE
OF
1B

Function
Bockspace
Line Feed, Cursor down
Move cursor up a line
Oearscreen
Carriage Return, cursor in the fIrst column
Tum on normal characters (Cancels OF effects)
Tum on special characters
Escape

The following sequences begin with $9B, the CSI (Control Sequence
Introducer). The characters that follow execute a function. The values in
square brackets can be left off. The n's you see represent one or more digit
decimal numbers given using ASCII characters. The value that is used
when n is left off, is given in the parenthesis that follow n in the
description of the function in the table.

Sequence
9B [n] 40
9B [n] 41
9B [n] 42
9B [n] 43
9B [n] 44
9B [n] 45
9B [n] 46
9B [n] [3B n] 48
9B4A
9B4B
9B4C
9B4D
9B [n] 50
9B [n] 53
9B [n] 54
9B 32 30 68
9B 3230 6C
9B6E

Function
Insert n blanks
Move cursor n (1) lines up
Move cursor n (1) lines down
Move cursor n (1) characters to the right
Move cursor n (1) characters to the left
Move cursor down n (1) lines into column 1
Move cursor up n (1) lines and into column 1
Cursor in line; Set column
Erase screen from the cursor
Erase line from the cursor
Insert line
Delete line
Delete n characters starting at cursor
Move up n lines
Move down n linef:
Line Feed => Line Feed + Return
Line Feed => just Line Feed
Sends the cursor position! A string of the
following form is returned:
9B (Line) 3B (Column) 52

Abacus

Control
Sequence
Introducer

6. Amiga Operating System

Sequence Function
9B (Style);(Foreground color);(Background color) 6D

The three parameters are decimal numbers in
ASCII format. They mean:
Style: 0 = normal

1 = bold
3 = italic
4 = underlined
7 = inverse

Foreground color: 30-37
Color 0-7 for Text
Background color: 40-47
Color 0-7 for background

9B (Length) 74 sets the maximum number of lines to be
displayed

9b (Width) 75 sets the maximum line length.
9B (Distance) 78 defmes the distance in pixels from the left

border of the window to the place where output
should begin

9B (Distance) 79 defmes the distance in pixels from the upper
border of the window to the place where output
should begin

The last four functions yield the normal values
if you leave off the parameters.

9B 302070
9B 2070
9B 71

Make cursor invisible
Make cursor visible
Sends window construction A string of the
following form is returned:
9B 31 3B 31 3B (Lines) 3B (Columns) 73

To see how the control characters work, have "pmsg" output this text to
your window:

my text: dc.b $9b,"4;31;40m"
dc.b "Underline"
dc.b $9b,"3;33;40m",$9b,"S;20H"
dc.b "** Hello, World! **",0

; (6.3.2D)

The parameters for the control sequence are put in quotation marks so
they are treated as an ASCII string. Now you see, just how easy it is to
do text output!

Here is the complete program to open and output the text and control
codes to your window in AssemPro format (We have used the AssemPro
macros !NIT AMIGA and EXIT AMIGA so AssemPro owners can start - -

119

6. Amiga Operating System Amlga Machine Language

120

the programs from the desktop. If you are using a different assembler
check your documentation for instructions on starting and exiting pro­
grams):

;***** 6.4.1D.ASM S.D. *****

Open Lib
closelib

~-30-378

~-4l4

;ExecBase ~4

* calls to Amiga Dos:

Open ~-30

Close ~-30-6

Write ~-48

IoErr ~-132

mode old ~ 1005
-

alloc abs ~-$cc

; Defined in AssemPro
Macros

ILABEL AssemPro:includes/Amiga.1 ;AssemPro only

INIT AMIGA

run:
bsr init
bsr test
nop
bra qu

test:
move.l #mytext,dO
bsr pmsg
bsr pcrlf
bsr pcrlf

rts

init:

move.l ExecBase,a6

lea dosname (pc) ,al
moveq #O,dO
jsr openlib (a6)
move.l dO,dosbase
beq error

lea consolname (pc) ,al
move.l #mode old,dO
bsr openfile
beq error
move.l dO,conhandle

;AssemPro only

;Initialization
;Sy stern-Test

;quit and exit

;System initialization
and oprn
;Number of Execute­
library

ppen DOS-Library

;Console Definition

;Console open

Abacus

pmsg:

ploop:

pmsg2:

pcrlf:

pchar:

pch1:

error:

qu:

rts

movem.l dO -d7 / aO-a6,- (sp)
move.l dO,aO
move.l
clr.l

tst.b

aO,d2
d3

(aO) +
beq pmsg2
addq.l # l,d3
bra ploop

move.l conhandle,dl
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/aO-a6
rts

move
bsr
move

#lO,dO
pchar
#13,dO

movem.l dO -d7 / aO-a6,- (sp)
move.l conhandle,d1

lea
move.b
move.l
move.l

outline,a1
dO, (a1)
a1,d2
#l,d3 ;1 letter

move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/aO-a6
rts

move.l dosbase,a6
jsr IoErr(a6)
move.l dO,d5

6. Amlga Operating System

;Print message (dO)

;output char in DO
;save all

;restore all

move.l #-1,d7 ;Flag

move.l conhandle,d1
move.l dosbase,a6
jsr close (a6)

move.l dosbase,a1
move.l ExecBa se,a 6

EXIT AMIGA

jsr

;Window close

;DOS.Lib close
closelib (a6)

;AssemPro only

121

6. Amlga Operating System Amlga Machine Language

6.4.2

122

openfile:
move.l a1,d1

move.l
move.l
jsr
tst.l
rts

dO,d2
dosbase,a6
open(a6)
dO

dosname: dc.b ' dos.library' ,0,0
Align.w

dosbase: dc.l 0

;Open File
;Pointer to 1/0-
Definition-Text

consolname: dc.b 'CON:0/100/640/100/** CLI-Test ** ',0
Align.w

con handle: dc.l 0
my text : dc.b $ 9b,' 4 ;31;4 Om'

dc.b 'Under line
dc.b $ 9b,' 3;33;40m' ,$9b,' 5;2 OH'
dc.b ,** Hello World!! **' ,0

align
outline: dc.w 0

end
;Output buffer for pchar

Now that you've done text and character output, its time to move on to
text input.

Keyboard input

You can read keyboard input very easily. You just need to open the I/O
channel of the CON: window and read from it. You need the READ
function from the DOS library to do this. Its offset is -42.

This function has three parameters just like the WRITE function.

In Dl
InD2
InD3

the handle number that you get from the OPEN function
the address that the data read in is to start at
the number of bytes to read

Here is a subroutine that reads the number of characters from the keyboard
that it finds in D3. It puts them in a buffer.

Read ~ - 4 2

getchr:

; (6.4.2A)

;* Get (D3) characters from the
keyboard

Abacus

inbuff:

move.l
move.l
move.l
jsr
rts

#inbuff,d2
dosbase,a6
conhandle,dl
Read(a6)

blk.b 80,0

6. Amlga Operating System

;Address of buffer in D2
;DOS base address in A6
;Our window handle
;Call Read function
;Done!
;Buffer for keyboard input

This routine returns to the main program when <Return> is entered. If
more then D3 characters are entered, "inbuff' only gets the first characters.
The routine gets the remaining characters when called a second time.

This sort of input is fairly easy. You can backspace, because only the
characters that should be there are put in the memory block starting at
"inbuff'. The number of characters moved into "inbuff' is put in DO.

Try the program out as follows:

After opening the CON: window, put the following lines in the main
program:

move it80,d3
bsr readchr
lea inline,aO
clr.b 0 (aO,dO)
bsr pmsg

bp:

;Read 80 characters (6.4.2B)
;Get line from keyboard
;Addres s of the line in AO
;Null byte on the end
;Output line again

After this comes the code segment that closes the window again. After
loading the program into the AssemPro debugger, make "bp" a break­
point and start the program. (SEKA users start the program with "g run"
and enter "bp" as the breakpoint) The program quits at the breakpoint and
you can take a look at the results on the screen. Then you can continue
the program (SEKA with "j bp") and let the window close.

After starting the program and opening the window, the cursor appears in
the upper left comer of the window. Enter some text and press <Return>.
The string that you just entered is output again on the screen.

You use the "pmsg" routine from the previous chapter to do the output.
This routine needs a null byte at the end of the text to be output. You put
a null byte there by putting the address of the input buffer in AO and then
erasing the byte at AO+DO using the CLR.B command. Since DO con­
tains the number of characters that were entered, this byte is the first
unused byte.

Since you're in the debugger you can redisplay the disassembled output
when the program ends to see what "getchar" put in "in buff' (SEKA
owners can use "q inbuff' when the program ends to see what "getchr" put
there.) You'll find the characters that you typed plus a closing $A. The

123

6. Amiga Operating System Amiga Machine Language

124

$A stands for the <Return> key and it's counted too, so if you enter a 12
and then hit <Return>, for example, DO will contain a three.

Try this again with a RAW: window. Change the window definition
from CON: to RAW: and reassemble the program. You'll notice the dif­
ference right away. After you've entered one character, a return is exe­
cuted. DO always has a one in it.

The advantage of this form of input is that cursor and function keys can
be recognized. Using your own routine, you can repeatedly accept input of
characters using "getchr" and then work with the special characters.

There's another form of keyboard input checking for a single key. This is
important when a program is about to execute an important function and
the user must say he wants it executed by entering a "Y" for yes. This can
be treated as normal input, but in some cases, there is a better method.

There is a function in the OOS library that waits a certain specified length
of time for a key to be pressed, and returns a zero (FALSE) if no key was
hit in this time period. It returns a-I ($FFFFFFFF = TRUE) if one was.
To find out which key it takes another function. The WaitForChar func­
tion, is only good for tasks like waiting for the user to let the program
know that it can continue scrolling text.

The function needs two parameters:

In D 1 the handle number of the window or file from which the charac­
ter should be read. It can also wait for a character from an
interface.

In D2 you pass the length of time in microseconds that you should
wait for a key stroke.

To wait one second for one key to be hit, you can use the following
routine:

WaitForCh=-30-174

scankey:
move.l conhandle,dl
move.l itlOOOOOO,d2
move.l dosbase,a6
jsr waitforch(a6)
tst.l dO
rts

; (6.4.2C)

;* Wait for a key stroke
;In our window
;Waiting time: one second
;D05 base address
;wait ...
;Test result

The TST command at the end of the program allows the calling routine to
use a BEQ or BNE command to evaluate the results of the routine---BEQ
branches if no key was hit. BNE doesn't.

Abacus 6. Amiga Operating System

Here is an example program in AssemPro format covering what you have
learned so far. Opening and closing a window, displaying text in the win­
dow and inputting text

;***** 6.4.2A.ASM S.D.

Open Lib
closelib

=-30-378
=-414

;ExecBase =4

* calls to Amiga Dos:

Open =-30
Close =-30-6
Read =-42
Write =-4B
IoErr =-132
mode old = 1005
alloc abs =-$cc

; Defined in AssemPro
;Macros

ILABEL AssemPro:includes/Amiga.l ;AssemPro only

INIT AMIGA

run:
bsr init
bsr test
nop
bra qu

test:
move.l ilmytext,dO
bsr pmsg
bsr pcrlf
bsr pcrlf
move.l ilBO,d3

bsr getchr
bsr pmsg

rts

init:

move.l ExecBase,a 6

lea dosname (pc) ,a1
moveq ilO,dO
jsr openlib (a6)
move.l dO,dosbase
beq error

lea consolname (pc) ,a1

;As semPro only

;Ini tiali za t ion
;System-Test

;quit and exit

;80 characters to read
(D3)
;get character
;output line

;System initialization
and open
;Number of Execute­
library

;Open DOS-Library

;Console Definition

125

6. Amiga Operating System

pmsg:

ploop:

pmsg2:

pcrlf:

pchar:

pchl:

getchr:

126

move.l
bsr
beq
move.l

rts

/lmode _0 Id,d 0
openfile
error
dO,conhandle

movem.l dO-d7 /aO-a6,- (sp)
move.l
move.l
clr.l

dO,aO
aO,d2
d3

tst.b (aO)+
beq pmsg2
addq.l lIl,d3
bra ploop

move.l conhandle,dl
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/aO-a6
rts

move /llO,dO
bsr pchar
move /l13,dO

movem.l dO-d7/aO-a6,- (sp)
move.l conhandle,dl

lea outline,al
move.b dO, (al)
move.l al,d2
move.l itl,d3
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7 / aO-a 6
rts

move.l lIl,d3
move.l conhandle,dl
lea inbuff,al
move.l al,d2
move.l dosbase,a6
jsr read(a6)
clr.l dO
move.b inbuff,dO
rts

Amiga Machine Language

;Console open

;Print message (dO)

;Check length

;Character in DO output
;Save all

;1 letter

;Restore all

;Get character for
keyboard
;1 Character

;Buffer-Address

Abacus

6.4.3

6. Amiga Operating System

error:
move.l dosbase,a6
jsr IoErr (a6)
move.l dO,d5

move.l #-1,d7
qu:

move.l conhandle,dl
move.l dosbase,a6
jsr close (a6)

move.l dosbase,al
move.l ExecBase,a6 jsr

EXIT AMIGA

open file:
move.l al,dl

move.l
move.l
jsr
tst.l
rts

dO,d2
dosbase,a6
open (a6)
dO

dosname: dc.b 'dos.library' ,0,0
Align.w

dosbase: dc.l 0

;Flag

;Window close

;DOS.Lib close
;closelib (a6)

;AssemPro only

;Open File
;Pointer to 1/0-
Definition-Text

consolname: dc.b 'CON:0/100/640/100/** CLI-Test ** ',0
Align.w

con handle: dc.l 0
mytext:dc.b '* * Hello Wor ld !! * * ',0

align
outline: dc.w 0 ;Output buffer for pchar
inbuff: blk.b 8 ;Input buffer

end

Printer control

Now that you've looked at console VO, let's look at outputting data from
the computer. The first device that we'll discuss is the printer.

It's very easy to use the printer. You just need to open another channel. It
goes just the way you learned it with CON: and RAW: windows; the
only difference is you enter PRT: instead.

127

6. Amiga Operating System Amiga Machine Language

6.4.4

6.4.5

128

You open this channel using the same lines that you used above for the
window except that the pointer is to the channel name PR T: in D 1. You
pass the mode "new" (1006) in D2 in the "do_open" routine as well. Save
the handle number that comes back at a label called "prthandle".

Now you can use the same output routines that you used with windows
to send text to the printer. You need to put "prthandle" instead of "con­
handle" in the line with the "move.l conhandle,dl" command.

Actually it would be better to eliminate this line from the routine totally.
Then you can use the same routine for window and printer output. The
calling procedure would then need to put "conhandle" in Dl for window
output. It would put "prtbandle" in Dl for printer output. This is a very
flexible output routine that can be used for window and printer output
now. You can't accept input from the printer, because the printer doesn't
send data. It just accepts it and prints it.

Serial 1/0

It's just as easy to use the serial interface as the printer. Just enter SER:
as the filename. Now you can use the DOS functions READ and WRITE
just as before to do I/O with the channel you've just opened. You can set
the parameters for the interface (like Hand shake and Transfer rate) with
the Preferences program.

Speech output

The Amiga has a speech synthesizer built in. This isn't quite as easy to
program as the I/O devices discussed earlier, however. You use the
"narrator.device" to do this.

This device requires several program steps to install it and then causes it
to speak. You need to open the device, start the I/O, etc ... Let's look at
how to translate the text into the proper form and then output the text.

First we need to do some initialization. Let's define the constants now.
Some of them are new.

;***** Narrator BasicFunctions 3/87 S.D. ***** (6.4.SA)

OpenLib ~-408

closelib ~-414

Abacus 6. Amlga Operating System

ExecBase ~4

Open ~-30

Close ~-36

mode old ~lOO5

OpenDevice ~-444

CloseDev ~-450

Sendlo ~-462

AbortIO ~-480

Translate ~-30

The initialization routine follows:

init:

;* Open DOS library *

move.l execbase,a 6
lea dosname,al
moveq #O,dO
jsr openlib(a6)
move.l dO,dosbase
beq error

;* Open translator.library

lea transname,al
clr.l dO
jsr openlib(a6)
move.l dO,tranbase
beq error

;Open File
;Close File
;Old Mode

;Open Device
;Close Device

;Start I/O
;Abort I/O

;Translate text

;Initialize and open system

;Pointer to EXEC library
;Pointer to DOS name
~ersion:unimportant

;Open DOS library
;Save handle
;Error handle

;Pointer to translator name

;Open translator
;Save handle
;Error handling

;* Set up I/O area for Narrator *

lea
move.l
move.l
move
move.l
move
move.l

talkio,al ;Pointer to I/O area in Al
#nwrrep,14 (al) ;Enter port address
#amaps,48+8 (al) ;Pointer to audio mask
#4,48+12 (al) ;Number of the mask
#512,36 (al) ;Length of the output area
#3,28 (al) ;Command: write
#outtext,40 (al) ;Address of output area

;* Open Narrator device *

clr.l dO ;Number 0
c lr.l dl ;No flags
lea nardevice,aO ;Pointer to device name
jsr opendevice (a6) ;Open narrator.device
L st.l dO ;Error ?

bne error ;Yes !

;* Open window *

129

6. Amiga Operating System Amlga Machine Language

130

move.l #consolname,dl ;Console definition
move.l #mode - old,d2 ;Old mode
move.l dosbase,a6 ;DOS base address
jsr Open (a6) ;Open window
tst.l dO ;Error ?
beq error ;Yes !
move.l dO,conhandle ;Else save handle

After you've done this initialization, you can have the computer save the
text you have prepared for it. To see what the Amiga is saying, use the
"pmsg" function to have the text written in the window:

move.l #intext,d2
bsr pmsg

sayit:

;Text for Amiga to say
;Output in window also

;Have the text said

;*Translate the text into a form that the computer can use*

lea
move.l
lea
move.l
move.l
jsr

intext,aO
#outtext-intext,dO
outtext,al
#5l2,dl
tranbase,a6
Translate(a6)

;Address of the text
;Length of the text
;Address of output area
;Length of output area
;Translator base address
; Trans late text

;* Speech output *

lea talkio,al
move.l #512,36 (al)
move.l execbase,a6
jsr SendIO (a6)

;Address of I/O structure
;Length of output area
;EXEC base address
;Start I/O (speech output)

Once the program ends, the I/O stops as well, so you need to put in
something that keeps the program going longer. You'll use the "getchr"
function that you programmed earlier to take care of this:

bsr getchr ;Wait for keyboard input

The computer waits until the <Return> key is pressed. Now you can
listen to what the Amiga has to say. Once the <Return> key is pressed,
the program stops.

qu:
move.l
lea
jsr

move.l
move.l
jsr

execbase,a6
talkio,a 1
abortio (a6)

conhandle,dl
dosbase,a6
close (a6)

; (6.4 .5C)
;EXEC base address
;Pointer to I/O area
;Stop the I/O

;Close window

Abacus 6. Amiga Operating System

move.l dosbase,d1
move.l execbase,a 6
jsr closelib(a6)

lea talkio,a1
jsr closedev(a6)

move.l tranbase,a1
jsr closelib(a6)

rts

;Close DOS library

;Close narrator.device

;Close translator library

;* End of program

Now comes the data that you need for the program above:

my text:
dosname:
transname:
con solname:
nardevice:

align
dosbase:
tranbase:
amaps:

align
conhandle:
talkio:
nwrrep:
intext:

align
outtext:

dc.b
dc.b
dc.b
dc.b
dc.b

dc.l
dc.l
dc.b

dc.l
blk.l
blk.l
dc.b

blk.b

'This is a test text! ',10,13,10,13,0,0
'dos.1ibrary' ,0,0
"translator.1 ibrary" ,0
'RAW:0/100/640/100/** Test window' ,0
'narrator.device' ,0

o
o
3,5,10,12

o
20,0
8,0
'hello, i am the amiga talking to you' ,0

512,0

This is quite a bit of work, but it's worth it because it opens so many
possibilities for you. There are a lot of variations possible if you modify
parameters. These parameters are entries in the I/O area starting at the
"talkio" label. The area is built as follows:

131

6. Amlga Operating System Amlga Machine Language

Offset Length Meaning
** Port Data **

0 L Pointer to next block
4 L Pointer to last block
8 B liD type
9 B Priority
10 L Pointer to liD name
14 L Pointer to port
18 W Length

** liD Data **
20 L Pointer to Device
24 L Pointer to Device Unit
28 W Command word
30 B liD flags
31 B liD status
32 L liD pointer
36 L liD length
40 L Pointer to data
44 L liD offset

** Narrator data items **
48 W Speech speed
50 W Highness of voice
52 W Speech mode
54 W Sex (male/female voice)
56 L Pointer to audio mask
60 W N umber of mask
62 W Volume
64 W Read in rate
66 B Flag for producing graphics (O=off)
67 B Actual mask (internal use)
68 B Channel used (internal use)

We wouldn't recommend experimenting with the data in the first two
blocks. If you do, you can easily cause a system crash. You can use the
last entries of the structure to produce some interesting effects though.

Here's an overview of the parameters you can use to vary the speech out­
put. The value in parenthesis is the standard value, the value set when
narrator.device is opened.

Speech speed (150)

132

You can use this to set the speed of speech. The pitch of the voice is not
affected by this value.

Abacus 6. Amiga Operating System

Pitch a/voice (110)

Speech mode (0)

Sex (0)

Volume (64)

You can choose a value between 65 and 320 for the pitch (from Goofy to
Micky Mouse).

The zero gives half-way natural speech. A one lets the Amiga speak in
monotone like a robot.

A zero means masculine and a one means feminine (more or less ...).

The volume can range from 0 to 64. The standard value is the loudest
possible.

Read in rate (22200)
By lowering this value, the voice is lowered. If you change this very
much, you'll get some weird voices!

You can experiment a bit until you find an interesting voice. Have fun!

Here is a complete talking program in AssemPro format:

;***** Speech output S.D.

Open Lib
closelib
;ExecBase

~-30-378

~-414

~4

* calls to Amiga Dos:

Open ~-30

Close ~-30-6

opendevice ~-444

CloseOev ~-450

addport ~-354

RemPort ~-360

;0010 ~-456

SendIO ~ -462
AbortIO ~ -480
Read ~-30-12

Write ~-30-18

~ylnput ~-30-24

;Output ~-30-30

;CurrOir ~-30-96

;Exit ~-30-114

WaitForCh ~-30-174

FindTask ~-294

Translate ~-30

mode old ~1 005
~ode new ~1006

;alloc_abs ~-$cc

;f ree _ mem ~-$d2

;defined by AssemPro

133

6. Amiga Operating System Amiga Machine Language

134

;! ! ! when> 500KB ! !! or place in chip memory
;org$40000
; load $40000
., I I" I I 1"",,1" I' t ,- - , .. , _ .. _.

ILABEL AssemPro:includes/Amiga.l ;AssemPro only

INIT AMIGA

run:
bsr init
bra test

init:

move.l ExecBase,a 6
lea dosname (pc) ,al
moveq #O,dO
jsr openlib(a6)
move.l dO,dosbase
beq error

;*

move.l ExecBase,a6
lea transname,al

clr.l dO
jsr openlib (a6)
move.l dO,tranbase
beq error

;*
sub.l al,al
move.l ExecBase,a6
jsr FindTask (a6)
move.l dO,nwrrep+2

lea nwrrep,al
jsr addport (a6)

;*
lea talkio,al

move.l #nwrrep,14 (al)
clr.l dO
clr.l dl
lea nardevice,a 0
jsr opendevice (a6)
t st.l dO
bne error

;*

bp:
lea talkio,al
move.l #nwrrep,14 (al)
move.l #amaps,48+8 (al)
move #4,48+12 (al)

;AssemPro only

;Initialization
;System-Test

;System initialization
;and open
;Pointer to EXEC library
;Pointer to DOS name
;Version: not important
;Open DOS-Library
;Save handle
;Error routine
;Open translator
library
;Pointer to EXEC library
;Pointer to translator
;name

;Open Translator
;Save handle
;Error routine
;Set up

;Find Task

;Add Port
;Open narrator device
;Pointer to I/O area in
;Al
;Enter Port address
;Number 0
;No flags
;Pointer to device name
;Open Narrator.device
;Error?
;Yes!
;Setup I/O for narrator
;device

;Pointer to I/O in Al
;Enter port address
;Pointer to audio mask
;Size of Mask

Abacus 6. Amiga Operating System

lea consolname (pc) ,al ~onsole-Definition

move.l #mode old,dO
bsr openfile ;Console open
beq error
move.l dO,conhandle

rts

test:
move.l #MyText,dO
bsr pmsg ;Test-Text output

bsr sayit ;Say text

bsr readln ;Input
move #lO,dO
bsr pchar ;LF output
move.l #inline+2,dO
bsr pmsg ;and again
bsr pcrlf
bra qu

error:
move.l #-1,d7 ;Flag

qu:
move.l ExecBase,a6 lea talkio,al
jsr abortio (a6)

move.l conhandle,dl ;Window close
move.l dosbase,a6
jsr close (a6)

move.l dosbase,al ;DOS.Lib close
move.l ExecBase,a 6
jsr close lib (a6)

lea nwrrep,al
jsr RemPort (a6) ;Remove port
lea talkio,al
jsr closedev (a6) ;close narraror device
move.l tranbase,al
jsr close lib (a6) ;Close translator

;library

EXIT AMIGA ;AssemPro only

openfile: ;Open File
move.l al,dl ;pointer to 1/0-

Definition-Text
move.l dO,d2
move.l dosbase,a6
jsr open (a6)
tst.l dO
rts

pmsg: ;Print message (dO)

135

6. Amiga Operating System

136

mes sl:

mess2:

per If:

pehar:

pehl:

movem.l dO-d7/aO-a6,- (sp)
move.l dO,aO
move.l aO,d2
clLl d3

tst.b (aO) +
beq mess2
addq.l # l,d3
bra messl

move.l conhandle,dl
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/aO-a6
rts

move #10,dO
bsr pehar
move #l3,dO

movem.l dO-d7/aO-a6,- (sp)
move.l conhandle,dl

lea chbuff,al
move.b dO,(al)
move.l al,d2
move.l #1,d3
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/aO-a6
rts

scankey:
move.l conhandle,dl
move.l #500,d2
move.l dosbase,a6
jsr waitforch(a6)
tst.l dO
rts

readln:
movem.l dO-d7 /aO-a6,- (sp)
lea inline+2,a2
clLl (a2)

inplop:
bsr getchr
cmp.b #8,dO
beq backspace
cmp.b #l27,dO
beq backspace
bsr pchar
cmp.b #13,dO
beq inputx
move.b dO,(a2)+
bra inplop

Amiga Machine Language

;Length calculate

;Output character in DO
;save all

;1 letter

;restore all

;Test key

;Wait value

;Input from keyboard
;save registers
;Pointer to input buffer

;Oelete ?

;Character output

Abacus

inputx:
clr.b
sub.l
move
movem.l
rts

backspace:
cmp.l
beq
move.b
bsr
move
bsr
move
bsr
clr.b
subq.l
bra

getchr:

move.l
move.l
lea
move.l
move.l
jsr
clr .1
move.b
rts

sayit:
lea
move.l
lea
move.l
move.l
jsr

p:
lea
move
move.l
move.l
move.l
jsr

rts

~lyText :
dosname:
transname:

align.w
dosbase:
tranbase:

(a2)+
#inline,a2
a2,inline
(sp) +,dO-d7 / aO-a6

#inline,a2
inplop
#8,dO
pchar
#32,dO
pchar
#8,dO
pchar
(a2)
#1,a2
inplop

#1,d3
conhandle,d 1
inbuff,al
al,d2
dosbase,a6
read(a6)

dO
inbuff,dO

intext,aO
#outtext-intext,dO
outtext,al
#512,dl
tranbase,a6
Translate(a6)

talkio,a1
#3,28 (al) ,? ') , ..
#512,36 (a1)
#outtext,40 (al)
ExecBase,a 6
sendio (a6)

6. Amiga Operating System

;Lenght in inline+l
;Registers

;At the beginning?
;yes

;Backspace

;Blank

;Backspace

;Get one character from
;keyboard
;One character

;Buffer-Address

dc.b 'This is our Test-Text' ',18,13,10,13,0,0
dc.b 'dos.library' ,0,0
dc.b "translator.library",O

dc.10
dc.10

137

6. Amiga Operating System

138

consolname:
nardevice:
amaps:

align.w
conhandle:
inbuff:
inline:
chbuff:
narread:
talkio:
nwrrep:
intext:

align.w
outtext:

end

Amlga Machine Language

dc.b 'CON:0/l00/6401100/* Speech-Test S.D.* ',0
dc.b 'narrator.device',O
dc.b 3,5,10,12,0,0

dc.10
blk.b 8
blk.b 180,0
blk.b 82,0
blk.120,0
blk.120,0
blk.18,0
dc.b 'hello, i am the amiga computer' ,0

blk.l 128,0

Abacus 6. Amiga Operating System

6.5 Disk operations

6.5.1

The most important peripheral device for a computer like the Arniga is
the disk drive. You use it to save data, so that you don't lose it when you
tum off the computer. We'll look at saving and retrieving data in this
chapter.

Let's first look at the simple disk operations that are used for data man­
agement. To gain access to a file, you must open it first. This is done
using the OPEN function from the DOS library, a function that you're
already familiar with. I'll assume in the following examples, that you've
already opened the DOS library.

Open files

The OPEN function needs a parameter for the mode. The mode has a par­
ticular meaning. If the file is opened for reading, it must already exist.
The mode for the OPEN function must be "old" (1005) in this case.

If you want to produce a file, you must open it first. Since it doesn't
exist, you use the "new" (1006) mode. If a file is opened for writing
using this mode even though a file with this name already exists, the old
file with this name is erased and replaced. To avoid loss of data, you
should check if a file by that name already exists and then output an error
message if it does.

You're going to start with a subroutine that opens a file. Let's assume
that the filename starts at the label "filename", and that it is closed with a
null byte. You just need to pass the mode in register D2.

The routine puts the file handle number in "filehd" and returns to the
main program. Since the operation with the handle is the last one
performed by the subroutine, the status of the operation can be evaluated
once the return has been executed. If the operation went smoothly and the
me is opened, the handle number has a non-zero value. If it is zero and
"bsr openfile" is followed by "beq error", you can branch to an error hand­
ling routine when problems occur.

139

6. Amiga Operating System Amiga Machine Language

6.5.2

140

Here is the subroutine for opening and closing a file.

Open
Close
Mode old

-30;
-36
1005

Mode new 100 6

openfile:
move.l dosbase,a6
move.l #filename,dl
jsr Open (a6)
move.l dO,f ilehd
rts

closefile:
move.l dosbase,a6
move.l f ilehd,d1
jsr Close (a6)
rts

(6.5.1A)

;* Open file, mode in DO
;DOS base address in A6
;Pointer to file name
;Open file
;Save handle

;* Close file
;DOS base address in A6
;File handle in D1
;Close file

filehd: dc.l
filename: dc.b

o
"Filename",O

;Storage for File handle
;File to be opened

align ;even

To use these routines, you must look at how you can load and save data.

Reading and writing data

Let's write a new file. To start, write the following lines:

move.l #Mode _ new,d2
bsr openfile
beq error

;Open new file (6.5.2A)
;Open file
;Didn • t work!

For the filename, write a name like "Testfile" in the line lab led
"filename". After calling the "openfile" routine, a file with this name is
created on the disk. If one existed already, it is erased.

Let's assume you want to write a short text to the file. For the example
let's use:

text: dc.b "This is a test text for the Testfile",O
textend:

The "textend" label is used so that you can calculate the number of data
bytes by subtracting "text".

You want to write this text in the file. Use the WRITE function which
needs three parameters:

Abacus 6. Amlga Operating System

InDl
InD2
InD3

the me handle that you got back from the OPEN function
a pointer to the data that should be written
the number of bytes to be written

For the example, you'll need another segment of code to put the pointer
to the data in D2 and the number of bytes in D3:

Write = -48

writedata:
move.l dosbase,a6
move.l f ilehd,dl
jsr Write (a6)
rts

; (6.5.2B)

;* Write data in the file
;DOS base address in A6
;File handle in Dl
;Write data

After opening the file, you can call the subroutine from the main program
with the following lines:

move.l #text,d2
move.l #textend-text,d3
bsr writedata

Then close the file with:

bsr
bra

close file
end

;Pointer to data
;Number of bytes
;Write data in the file

;Close file
;End program

After running the program, look at the directory of the diskette, you
should find the me "testfile". It is just as long as your text. You want to
read this file in, to make sure that it contains the right data.

You need the DOS function READ, which needs the same parameters as
the WRITE function. You can use parameters for the number of bytes to
read just part of the file. If you give a larger number than the file con­
tains, the whole file is loaded. You'll find the number of bytes read in
DO.

Let's set up a field that has enough space for the data you want to read.
You can do this with the following line:

field: blk.b 100 ;Reserve 100 bytes

For the example data, this is plenty. If you want to load another me, you
may need to reserve more space.

Now let's write a subroutine to read the data. You always want to load
whole files. You just need to pass the address of the buffer so the data is
loaded into the subroutine. In the example, it's the address "field".

141

6. Amiga Operating System Amiga Machine Language

6.5.3

142

Here's the subroutine that reads the entire opened file into the memory
area pointed to by 02:

Read = -42

readdata:
move.l dosbase,a6
move.l f ilehd,d1
move.l #$ffffff,d3

jsr Read(a6)
rts

; (6.S.2C)

;* Read file
;OOS base address in A6
;File handle in 01
;Read an arbitrary number of
bytes
;Read data

To use this routine to load the file into the buffer "field", use the follow­
ing main program:

move.l #Mode _old,d2
bsr openfile
beq error
move.l #field,d2
bsr readdata
move.l dO,d6
bsr closefile
bra end

;Old file
;Open file
;Oidn 't work
;Pointer to data buffer
;Read file
;Save number of bytes in 06
;Close file
;Program end

After assembling and starting this program, you can use the debugger to
look at the data buffer that you filled with data from the file. In 06,
you'll find the number of bytes that were read from the file.

Erase files

Once you've experimented enough with the program above, you'll cer­
tainly want to erase the "Testfile" file. The OELETEFILE function in the
DOS library has an offset of -72. It only needs one parameter. The para­
meter is passed in 01. The parameter is a pointer to the filename. The
name must be closed with a null byte.

To erase "Testfile", use the following lines:

OeleteFile = -72

move.l dosbase,a6
move.l #filename,d1

jsr OeleteFile(a6)

; (6.5.3)

;OOS base address in A6
;Pointer to file name in
01
;Erase file

Abacus

6.5.4

6.5.5

6. Amiga Operating System

The file is deleted. You can't save the file with normal methods if you
accidently erase it! You can use a trick that saves the data. We'll take a
look at this trick later. It's used in lots of programs.

Rename files

When a text editing program writes a text that has been altered back to
disk, the old file usually isn't erased. Often the old file is renamed. For
example, it might get the name "Backup". Then the new file is written to
disk with the old name.

The function in the DOS library that allows you to change the names of
programs is called RENAME and has -78 as an offset. You need to pass
two parameters-Dl as a pointer to the old name and D2 as a pointer to
the new name of the file.

To rename "Testfile" as "Backup" (before you erase it), use the following
lines:

Rename = -78

move.l dosbase,a6
move.l #01dname,d1
move.l #newname,d2
jsr Rename (a6)

oldname: dc.b "Testfile",O
newname: dc.b "Backup",O

eLI directory

;D05 base addressin A6
;Pointer to old name in D1
;Pointer to new name in D2
;Rename file

Let's pretend that you've programmed a text editor and started it. Now
you want to load a text from disk and edit it-but what's the name of that
file?

You need a function to read and display the directory of a disk. There are
several ways to do this. First let's use the easiest method. It doesn't re­
quire much programming and can be quite useful.

The trick is to call the Dir or List programs that are in the C directory.
You'll use the CLI commands. The DOS library contains a command
called "Execute" with offset -222 that allows you to execute C L I com­
mands.

143

6. Amiga Operating System Amlga Machine Language

144

The function needs three parameters:

In D1 a pointer to a string closed with a zero that contains the name of
the command to be executed. This string must contain the same
command that you would give in the C L I. It can be a null
pointer as well.

In D2 the input file is determined. Normally there's a zero here. If,
however, you give the file handle of a text file, though, this file
is read and interpretted as a command sequence. If you define a
window as the input medium, you've programmed a new CLI

window!
In D3 the output file is determined. If there's a zero here, the output of

the commands (for example, DIR output) is sent to the standard
CLI window.

To try this out, insert this subroutine in a program that has already
opened the DOS library and a window.

F:xecute

dir:

-222

move.l dosbase,a6
move.l #command,d 1
clr.l d2
move.l conhandle,d3
jsr Execute (a6)
rts

command:
dc.b "dir",O

; (6.:'.5)

;DOS base address in A6
;Pointer to command line
;No input (eLI window)
;Output in our window
;Execute command

This program works with the List command as well. The disadvantage of
this method is that the disk that the Workbench is loaded from must be in
the drive or the system requests you to put it in. The Dir command is just
a program, and the Amiga must load it before it can run.

This disadvantage isn't too great. The program is short, and it allows you
to use any CLI command in a program.

Here is the complete program in AssemPro format that calls the Dir
program:

;***** 6.5.5 ADIR.ASM S.D. *****

Open Lib
closelib
;Exec8ase

=-408
~-414

~4

* calls to Amiga Dos:

; Defined in AssemPro
Macros

Abacus 6. Amlga Operating System

Open ~-30

Close =-36
Execute = -222
IoErr =-132
mode old 1005
alloc abs ~-$cc

ILABEL AssemPro:includes/Amiga.l ;AssemPro only

IN IT AMIGA

run:
bsr init
bra test

init:

move.l ExecBase,a 6

lea dosname (pc) ,al
moveq #O,dO
jsr openlib (a6)
move.l dO,dosbase
beq error

lea consolname(pc),al
move.l #mode old,dO
bsr openfile
beq error
move.l dO,conhandle

rts

test:
bsr dir
bra qu

dir:
move.l dosbase,a6
move.l # command,d 1
clr.l d2
move.l conhandle,d3
jsr Execute (a6)

rts

error:
move.l dosbase,a6
jsr IoErr (a6)
move.l dO,d5

move.l #-l,d7

qu:
move.l conhandle,dl
move.l dosbase,a6

jsr close (a6)

;AssemPro only

;Initialization
;System-Test

;System initialization
;and open
;Number of Execute­
;library

;Open DOS-Library

;Console Definition

;Console open

;do directory
;quit and exit

;D05 base address in A6
;Pointer to command line
;No input (CLI window)
;output in our window
;execute command

;Flag

;Window close

145

6. Amiga Operating System Amiga Machine Language

6.5.6

146

move.l dosbase,al
move.l ExecBase,a 6
jsr closelib(a6)

EXIT AMIGA

open file:
move.l al,dl

move.l
move.l
jsr
tst.l
rts

dO,d2
dosbase,a6
open (a6)
dO

dosname: dc.b 'dos.library' ,0,0
Align.w

dosbase: dc.l 0

;DOS.Lib close

;AssemPro only

;Open File
;Pointer to 1/0-
;Definition-Text

consolname: dc.b 'CON:0/100/640/100/** CLI-Test ** ',0
Align.w

con handle: dc.l 0
command:

dc.b "dirfl,O

end

Read directory

Now, let's look at another method that doesn't need the CLI. In this way,
you can read the directory of any disk without having to play Disk
Jockey.

You need to write a program that does what CL I' s Dir program does.
There are several steps.

First you must give the system a key to the desired directory. That means
you must call DOS' Lock function. It needs two parameters:

In Dl pass a pointer to a text that contains the name of the directory
you wish to read. If, for example, you want to read the contents
of the RAM disk, the text would be 'RAM:' ,0.

In D2 put the mode that determines whether to read or write. Let's use
the "Read" (-2) mode.

Abacus 6. Amlga Operating System

You call the Lock function (Offset -84) and get either a pointer to the key
or a zero returned to you in the DO register. If you get a zero, the call
didn't work, the file wasn't found. This function can be used to find if a
file is on the disk. You use this function with the name and see if DO
comes back zero. If not, the me exists.

Let's assume the file or path exists. You need to save the value that came
back in DO. You'll need it for both functions that you'll call.

The next function you need is called Examine. You use it to search the
disk for an acceptable entry. It returns parameters like name, length and
date that correspond to the entry. You need to reserve a memory block for
this information and put the beginning of the block in D2 before calling
the Examine function. Put the key that you got from the Lock function
in the Dl register.

The memory area that is filled with information is called a FileInfoBlock.
It's 260 bytes long and contains information about the file. The name
starts in the 9th byte and ends with a null byte, so you can easily print it
with our "pmsg" routine. The information that Examine gives isn't about
a particular file, but about the disk. The name in FileInfoBlock is the disk
name.

The Examine function sends the status back in the DO register. Since the
Lock function already tested if the file existed, evaluating the status really
isn't necessary.

Now to the function that you can use to read individual files from the
directory. The function is called ExNext (Examine Next). This function
searches for the next entry that fits the key every time it is called. ExNext
gets the same parameters as Examine gets. However, the return parameter
in DO is more important here.

The ExNext function is always called in the same way. It always gets the
next entry of the directory. If no more entries exist in the directory, Ex­
Next puts a zero in the DO register.

You need to continue performing this operation until there aren't any
more entries. You can find this using the IoErr function from the DOS
library.

This function doesn't need any parameters. It returns the status of the last
va operation that was performed in the DO register. After the last Ex­
Next, this value is 232, which means no_more _Entries.

147

6. Amiga Operating System Amiga Machine Language

148

Here's a complete routine for reading the directory of the disk in drive
DFO: and displaying the contents in the window.

;6.5.5B.ASM

;***** DOS-Sample function 3/87 S.D. *****

Open Lib
closelib
ExBase

=-30-378
=-414
=4

* calls to Amiga Dos:

Open = -30
Close = -30-6
Read = -30-12
Write = -30-18
Mylnput = -30-24
Output = -30-30
CurrDir = -30-96
Lock = -30-54
Examine = -30-72
ExNext = -30-78
Exit = -30-114
IoErr = -30-102
WaitForCh =-30-174
Mode = 0
mode old = 1005
mode new = 1006 -
alloc abs = -$cc
free rnem = -$d2

ILABEL AssemPro:includes/Amiga.1 ;AssemPro only

IN IT AMIGA

run:
bsr init
bra test

init:

move.l ExBase,a6
lea dosname (pc) ,a1
moveq #O,dO
jsr openlib (a6)
move.l dO,dosbase
beq error

lea consolname (pc) ,al
move.l #mode old,dO
bsr openfile
beq error
move.l dO,conhandle

rts

;AssemPro only

;Ini tiali zation
;System-Test

;System initialization
;and open
;Pointer to EXEC library

;Open DOS-Library

~onsole-Definition

;Console open

Abacus 6. Amlga Operating System

test:
move.l #MyText,dO
bsr pmsg ;Test-Text output

move.l dosbase,a6
move.l #name,dl
move.l #-2,d2
jsr Lock (a6)
move.l dO,d5
tst.l dO
beq error
move.l dO,locksav

move.l dosbase,a6
move.l locksav,dl
move.l #fileinfo,d2
jsr Examine (a6)
move.l dO,d6
tst.l dO
beq error

loop:
move.l dosbase,a6
move.l locksav,dl
move.l Hileinfo,d2
jsr ExNext (a6)
tst.l dO
beq error

move.l Hileinfo+8,dO
bsr pmsg
bsr pcrlf
bra loop

error:
move.l dosbase,a6
jsr IoErr (a6)
move.l dO,d6

move.l #presskey,dO
bsr pmsg
bsr getchr
move.l #-l,d7 ;Flag

qu:
move.l conhandle,dl ;Window close
move.l dosbase,a6
jsr close (a6)

move.l dosbase,al ;DOS.Lib close
move.l ExBase,a6
jsr closelib (a6)

EXIT AMIGA ;AssemPro only

openfile: ;Open File

149

6. Amiga Operating System Amiga Machine Language

move.l al,dl ;pointer to 1/0-
;Definition-Text

move.l dO,d2
move.l dosbase,a6
jsr open (a6)
tst.l dO
rts

pmsg: ;Print message (dO)
movem.l dO-d7/ aO-a6,- (sp)
move.l dO,aO
move.l aO,d2
clr.l d3

messl:
tst.b (aO) +
beq mess2
addq.l 'ill,d3
bra messl

mess2:
move.l conhandle,dl
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/aO-a6
rts

pcrlf:
move 'illO,dO
bsr pchar
move 'il13,dO

pchar: ;Character in DO output
movem.l dO-d7/ aO-a6,- (sp) ;save all
move.l conhandle,dl

pchl:
lea chbuff,al
move.b dO,(al)
move.l al,d2
move.l 'ill,d3
move.l dosbase,a6
jsr write (a6)
movem.l (sp) +,dO-d7/ aO-a6 ;restore all
rts

scankey: ;Test key
move.l conhandle,dl
move.l 'il500,d2 ;Wait value
move.l dosbase,a6
jsr waitforch (a6)
tst.l dO
rts

readln: ;1nput from keyboard
movem.l dO-d7/ aO-a6,- (sp) ;Registers
lea inline+2,a2 ;Pointer to input buffer
clr.l (a2)

inplop:
bsr getchr

150

Abacus

cmp.b
beq
cmp.b
beq
bsr
cmp.b
beq
move.b
bra

Input:
clr.b
sUb.l
move
movem.l
rts

backspace:
cmp.l
beq
move.b
bsr
move
bsr
move
bsr
clr.b
subq.l
bra

getchr:

move.l
move.l
lea
move.l
move.l
jsr
clr.l
move.b
rts

#8,dO
backspace
#127,dO
backspace
pchar
#13,dO
Inputx
dO,(a2)+
inplop

(a2)+
#inline,a2
a2,inline
(sp) +,dO-d7 /aO-a6

#inline,a2
inplop
#8,dO
pchar
#32,dO
pchar
#8,dO
pchar
(a2)

#1,a2
inplop

#1,d3
conhandle,d1
inbu f f,a1
a1,d2
dosbase,a6
read(a6)
dO
inbuff,dO

6. Amiga Operating System

;Delete ?

;Character output

;Length in inline+1
;Registers

;at beginning?
;yes

;Backspace

;Blank

;Backspace

;Get one character from
;keyboard
;1 character

;Buf fer-Addres s

MyText: dc.b 'Directory of diskette: DFO: ',10,13,10,13,0,0
dosname: dc. b 'dos .library' ,0,0
presskey: dc.b 'Press the RETURN key!! ',0

align.w
dosbase: dc.l 0
consolname: dc.b 'CON:0/100/640/100/** Directory-Test **',0
name: dc.b 'DFO: ',0

align.w

locksav: dc.l °
fileinfo:
conhandle:
inbuff:
inline:
chbuff:

ds.l 20
dc.l 0
DS.B 8
DS.B 180
DS.B 82

151

6. Amlga Operating System Amlga Machine Language

6.5.7

152

end

The FileInfoBlock contains the following entries:

Offset
o
4
8
116
120
124
128
132
136
140
144

Name
DiskKey.L
DirEntryType.L
FileName
Protection.L
EntryType.L
Size.L
NumBlocks.L
Days.L
Minute.L
Tick.L
Comment

Meaning
Disk number
Entry type (+ = Directory, - = File)
108 bytes with the filename
File protected?
Entry type
Length of file in bytes
Number of blocks
Creation day
Creation time
Creation time
116 bytes with comments

If you want to have the program output the file length as well, you can
read the length with "move.! fileinfo+ 124,dO" and then use a conversion
routine to produce a decimal number. You can output this result with the
name.

Direct access to disk

There isn't a simple function in the library for accessing single disk
sectors. Here, you must work with a device just like you did with speech
output. This time you'll be working with the trackdisk.device.

You want to work with this device to directly program the disk drives.
Once you've built up the necessary program machinery, you can experi­
ment with various commands for disk access. Remember that an error can
cause the disk to be modified and thus unusable. Make sure you're using a
non-essential disk. Don't use one which contains your only copy of
something.

The initialization here is similar to that for speech output. Here's the ini­
tialization routine for the program:

;** Direct disk access via trackdisk.device ** (6.5.6)
Open Lib =-408
closelib
ExecBase
Open
Close

=-414
=4
=-30
=-36

Abacus

opendeviee
CloseDev
SendIo
Read
Write
WaitForCh
mode old
run:

=-444
=-450
=-462
=-30-12
=-30-18
=-30-174
=1005

init:

bsr
bra

move.l
lea
moveq
jsr
move.l
beq
lea
move.l
elr.l
clr.l
lea
jsr
tst.l
bne

init
test

execbase,a6
dosname,a1
#O,dO
openlib (a6)

dO,dosbase
error
diskio,a1
#diskrep,14 (al)
dO
d1
t rddev ice,aO
opendevice (a6)
dO
error

6. Amiga Operating System

;Initialization
;System test
;Initialize and open
;system
;Pointer to EXEC library

;Open DOS library

;Pointer to disk I/O area
;Pointer to port
;Drive 0 (built in)
;No flags
;Pointer to device name
;Open trackdisk.device
;Error?
;Yes!

move.l #consolname (pc) ,d1 ;Console definition
;Old mode move.l

move.l
jsr
tst.l
beq
move.l
rts

test:

#mode 0ld,d2
dosbase,a6
open (a6)
dO
error
dO,conhandle

;DOS base address
;Open window
;Error?
;Yes!
;EIse save handle
;Done
;Place for test routine

And now for the functions that take care of the various messages at the
end of the program.

error:
move.l #-l,d7 ;Flag for error (for SEKA)

qu:
move.l execbase,a 6 ;EXEC base address
lea diskio,a1 ;Pointer to disk I/O
move.l 32(a1),d7 ;10 ACTUAL in D7 (for testing)
move #9,28(al) ;Command: motor on/off
move.l #O,36(a1) ;O=off, l=on, so turn motor
jsr sendio (a6) ;off
move.1 conhandle,d1 ;Close window
move.l dosbase,a6
jsr close(a6)
move.l dosbase,d1 ;Close DOS.Lib
move.l execbase,a 6
jsr closelib (a6)
lea diskio,a1

153

6. Amiga Operating System Amiga Machine Language

154

jsr
rts

closedev (a6) ;Close trackdisk.device

Let's not forget the routine that waits for the user to press <Return>, so
that you can watch the effects of the test function in peace:

getchr:
move.l #l,d3
move.l conhandle,d1
move.l #inbuff,d2
move.l dosbase,a6
jsr read(a6)
rts

;Get a character from keyboard
;1 character
;Window handle
;Buffer address
;DOS base address
;Read character
;That's it

The last thing you need is the section of code that declares the text and
data fields that your program needs:

dosname: dcb
align

consolname: dc.b

align
trddevice:

align
dosbase:
con handle:
inbuff:
diskio:
diskrep:
diskbuff:

dc.b

dc.l 0
dc.l 0
blk.b 80,0
blk.l20,O
blk.l8,O
blk.b 512*2,0

'dos.library' ,0

'RAW:0/100/640/50/** Wait
Window',O

'trackdisk.device' ,0

;DOS base address
;Window handle
;Keyboard buffer
;1/0 structure
;I/O port
;Place for 2 sectors

There, now you're done with the set-up work. Let's look at how you can
give commands to the disk drives. The first and easiest command, is the
one for turning the drive motor on and off. You've already seen this com­
mand in the program. This is command number nine. This number goes
in the command word of the 110 structure (bytes 28 and 29 of the struc­
ture).

You need to pass a parameter that lets the computer know whether to tum
the motor off or on. This information goes in the 110 long word that
starts at byte 36; it's zero for off, and one for on.

You already chose the motor that should be turned on or off when you
opened the device. You put the number of the chosen disk drive in DO-­
in your case you put a zero there because you are using the DFO: disk
drive.

Here's an overview of the commands you can use to access information
on the disk:

Abacus 6. Amiga Operating System

No. Name Function
2 READ Read one or more sectors
3 WRITE Write sectors
4 UPDATE Update the track buffer
5 CLEAR Erase track buffer
9 MOTOR Tum motor on/off
10 SEEK Search for a track
11 FORMAT Format tracks
12 REMOVE Initialize routine that is cal1ed when you

remove the disk
13 CHANGENUM Find out number of disk changes
14 CHANGE STATE Test if disk is in drive
15 PROTSTATUS Test if disk is write protected

You've already learned about command number nine. Let's look at the
three commands you can use to make tests. These are the last three com­
mands. They put a return value in the long word that begins in the 32nd
byte in the 110 structure. This value was written to D7 in the program
above for testing purposes. You can read its contents directly if you ran
the program with AssemPro.

Here is a simple routine that you can use to run one of these commands
with:

test:
lea diskio, a1
move #13,28 (a1)
move.l execbase,a6
jsr SendIO (a6)

; (6.5.6B)
;Pointer to I/O structure
;Pass command (for example, 13)
;EXEC base address in A6
;Call function

If CHANGENUM (command 13) is executed, in D7 you'l1 get the num­
ber of times a disk was taken out and put in the drive. If you cal1 the
program, you'l1 get a value back. If you take the disk out and put it back
in, the number is two higher the next time you call the program.

The CHANGESTATE command (command 14) tel1s whether a disk is in
the drive or not. If one is, a zero comes back. Otherwise, a $FF is re­
turned.

You get the same values back from the PROTSTATUS function (com­
mand 15). Here a zero means that the disk isn't write protected, while
$FF means that it is.

Now let's look at the READ and WRITE functions. These operations
need a few more parameters than the status functions. You need to pass
the fol1owing parameters:

155

6. Amlga Operating System Amlga Machine Language

156

The address of the 110 buffer in the data pointer, the number of bytes to
be transferred in 110 length, and the data address on the disk in I/O offset.

The number of data bytes must be a multiple of 512, since every sector is
512 bytes, and only whole sectors can be read.

The data address is the number of the flrst byte in the sector. If you want
to use the flrst sector, the offset is zero. For the second sector, it's 512,
etc ... The formula is:

Offset = (Sector_number - 1) * 512

Here is a routine that loads the first two sectors of the disk into the
buffer:

test: (6.S.6C)
lea diskio,al
move #2,28 (al) ;Command: READ
move.l #diskbuff,40 (al) ;Buffer
move.l #7*5l2,36(al) ;Length: 2 sectors
move.l #0*512,44 (al) ;Offset: 0 sectors
move.l execbase,a6 ;EXEC base address
jsr SendIO (a6) ;Start function

Start the program from the debugger and then look at the buffer's contents
after the program ends. You can flnd out the format of the disk here. If
you want to read a sector that's being used, change the 0 in the offset
definition to 700 and start again. It's highly probable that there's some
data there.

To modify and write back the data that you've read from the disk, you
need command three, the WRITE command. The parameters are the same.

If you've execute the WRITE command, you're probably wondering why
the disk light didn't go on. That's because the Amiga writes a track that
has been read into a buffer of its own. It WRITEs data there as well. It
won't write the data to disk until another track is accessed.

You can have the data updated directly as well using command four, the
UPDATE command.

Command 11, the FORMAT command, is also quite interesting. This
command needs a data field that is 11 *512=5632 bytes long-the length
of a track. The offset must be a multiple of this number so that you start
at the beginning of a track.

The length must be a multiple of 5632 as a result. If several tracks are
formatted, each track is ftlled with the same data.

Abacus 6. Amiga Operating System

You can use this function to easily write a disk copy program. You
READ the source disk and then FORMAT the corresponding track on the
destination disk. That's how the DiskCopy program works-it reformats
the destination disk.

Command ten, the SEEK command, just needs the offset. It moves the
Read/Write head of the drive to the position specified without making a
disk access or testing if it's at the right position.

Command 12, the REMOVE command, is used to install an interrupt
routine that is called when the disk is removed from the disk drive. The
address of the interrupt structure is passed in the data pointer of the I/O
structure. If there's a zero here, the interupt routine is turned off.

Here is a complete example program in AssemPro format:

;***** Track disk-Basic function 10/86 S.D. *****

ILABEL ASSEMPRO:lncludes/amiga.1 ;AssemPro only

Open Lib
closelib
;ExecBase

~-30-378

~-4l4

~4

* calls to Amiga Dos:

Open ~-30

Close ~-30-6

opendevice ~-444

CloseDev ~-450

SendIo ~-462

Read ~-30-l2

Write ~-30-l8

WaitForCh ~-30-l74

mode old ~l ° 05

run:

init:

INIT AMIGA

bsr
bra

move.l
lea
moveq
jsr
move.l
beq

lea
move.l

init
test

ExecBase,a 6
dosname,al
#O,dO
openlib (a6)
dO,dosbase
error

diskio,al
#diskrep,14 (al)

;defined in INIT_AMIGA

;AssemPro only

;Initialization
;System-Test

;System initialization
and open
;Pointer to EXEC-library

;Open DOS-Library

157

6. Amiga Operating System

clr.l dO
clr.l dl
lea trddevice,aO
jsr opendevice(a6)
tst.l dO
bne error

bp:
lea consolname (pc) ,al
move.l #mode old,dO -
bsr openfile
beq error
move.l dO,conhandle

rts

test:
bsr accdisk

bsr getchr
bra qu

error:
move.l #-l,d7

qu:
move.l ExecBase,a 6 lea
move #9,28 (al)
move.l #O,36(al)
jsr sendio (a6)

move.l conhandle,dl
move.l dosbase,a6
jsr close (a6)

move.l dosbase,al
move.l ExecBase,a 6
jsr closelib (a6)

lea diskio,al
move.l 32(al),d7
jsr closedev(a6)

EXIT AMIGA

openfile:
move.l al,dl

move.l dO,d2
move.l dosbase,a6
jsr open (a6)
tst.l dO
rts

scankey:
move.l conhandle,dl
move.l #500,d2

158

Amlga Machine Language

;Open trackdisk.device

;Console-Definition

;Console open

;wait for character

;Flag

diskio,al

;Window c:1 ose

;DOS.Lib close

;AssemPro only

;Open File
;Pointer to the 1/0-
Definition-Text

;Test for key

;Wait value

Abacus

getchr:

move.l
jsr
tst.l
rts

move.l
move.l
lea
move.l
move.l
jsr
clr.l
move.b
rts

accdisk:
lea
move
move.l
move.l
move.l
move.l
rts

dosbase,a6
waitforch(a6)
dO

#l,d3
conhandle,dl
inbuf f,al
al,d2
dosbase,a6
read (a6)
dO
inbuff,dO

diskio,al
#2,28 (al)
#diskbuff,40 (al)
#2*512,36 (al)
#20*512,44 (al)
ExecBase,a6 jsr

6. Amlga Operating System

;Get one character from
keyboard
;1 character

;Buffer-Address

;Command: READ
;Buffer
;Length: 2 Sectors
;Offset: n Sectors
sendio (a6)

dosname: dc.b 'dos.library' ,0,0
align.w

dosbase: dc.l 0
consolname: dc.b 'RAW:0/IOO/640/100/** Test-Window S.D.

VO.l' ,0
trddevice: dc.b 'trackdisk.device' ,0

align.w
con handle: dc.l 0
inbuff: ds.b 8
diskio:
diskrep:
diskbuff:

end

ds.120,0
ds.l 8,0
ds.b 512*2,0

159

Chapter 7

Working with
Intuition

Abacus

7

7. Working with Intuition

Working with Intuition

Now that you've learned so much about machine language, let's look at
the special features of the Amiga. Let's look at the operating system
Intuition that is in charge of windows, screens, the mouse and lots of
other things. Before taking a look at these beautiful features, there's some
bad news.

First, though, let's hear the good news. Since Intuition has so many
functions, it allows you to be very creative in programming your ideas.
The disadvantage is that the flexibility means that you have to use a lot
of parameters, and that makes for a lot of tedious work.

However, this is no grounds for a panic. Once you've built up the neces­
sary routines, the programming and experimentation become increasingly
interesting. Before you try out new program variations, you should save
your source code to disk, because Intuition get's fairly upset about bad
parameters and often responds by crashing the system.

Now let's get to work. To start working with Intuition, you need the
Intuition library. You can load it with the OpenLibrary function from the
EXEC library. Here's the subroutine that takes care of initialization.

OpenLib ~ -408
ExecBase = 4
run:

bsr

openint:

openint

move.l ExecBase,a 6
lea IntName,al

jsr OpenLib(a6)
move.l dO,intbase
rts

;Load Intuition library

;* Initialize and open system
;EXEC base address
;Name of Intuition
;library
;Open Intuition
;Save Intuition base address

IntName: dc.b" intuition.library",O
align

intbase: dc.lO ;Base address of
;Int ui t ion

When your program is finished, you need to close the screens, the win­
dow and the library. To do this, use the CloseLibrary function from the
EXEC library. It has an offset of -414. Here's the subroutine:

163

7. Working with Intuition Amiga Machine Language

164

CloseLibrary -414

closeint: ;* Close Intuition
move.l execbase,a6 ;EXEC base address in A6
move.l intbase,aI ;Intuition base address

in Al
jsr CIoseLibrary (a6) ;Close Intuition
rts ;Done

Now that you've got that taken care of, you can finally start working
with Intuition.

Abacus 7. Working with Intuition

7.1 Open screen

Intuition is a graphics operating system. For this reason, you'll be
working with the screen. It's even more interesting to work with several
screens at the same time. However, you only have one monitor on the
Amiga.

You can open as many screens as you like (at least, as long as there's
some memory available). You can open a window, display menus and do
I/O's there. The individual screens are fully independent. You can work
with all of them simultaneously on the monitor.

You can move individual screens forward and back to your heart's content.
You can also press the left <Amiga> key and then an "m" to return to the
Workbench screen after getting into the different screens.

You want to begin programming Intuition by setting up a screen. You've
already loaded the Intuition library, so you can use the OpenScreen func­
tion.

Wait a minute! What should the screen look like, where should it go, and
what form should it have? You need to look at the options for the form of
the screen you have available.

The input to the screen is in the form of a table that has 13 entries. Let's
take a look at the parameters that you need for our screen.

You'll start the table with the label "screen defs" which must be at an
even address:

align
screen defs: ;* The screen table begins here

The fust bit of information that the screen needs is the position and size.
Let's have it start in the upper left comer and fill the entire screen. You'll
use the positions X=O and Y =0, the width 320 and the height 200. This
means that your screen is the maximum size.

x pos: dc.w 0 ;X-Position -
y pos: dc.w 0 ;Y-Position

-

width: dc.w 320 ;Width
height: dc.w 200 ;Height

165

7. Working with Intuition Amiga Machine Language

166

Next you need to decide which colors should be displayed. That depends
on the number of bit planes, on the depth. Let's choose two. That means
you have 2112 (4) colors available. If the depth was one, you'd only have
two colors available. Let's choose two, since four colors is usually
plently.

depth: dc.w 2 ;Number of bit planes

Next you need to choose the color of the title line and the function sym­
bols. Give the number of the color register:

detail_pen: dc.b o ;Color of the text, etc ...

Now for the color of the text background:

block_pen: dc.b 1 ;Background color

Make sure that these two inputs fit in a byte. The colors are normally the
following (if the standard values haven't been changed). You'll notice that
the number of colors depends on the number of bit maps.

pen Color
o Background (blue)
1 VVlrite
for two bit planes
2 Black
3 Red
for three bit planes
4 Blue
5 Violet
6 Turquoise
7 VVlrite
for four bit planes
8 Black
9 Red
10 Green
11 Brown
12 Blue
13 Blue
14 Green
15 Green

The next word contains the bits that decribe the appearance of the screen.
The bits are:

Abacus

Bit
1
2

6
7
8
10
and
11

13
14
15

Value
2
4

$40
$80
$100
$400

$800

$2000
$4000
$8000

7. Working with Intuition

Name Meaning
GENLOCK VIDEO
INTERLACE Puts the screen in Interlace

mode. The resolution and thus
the maximum screen size are
doubled.

PFBA
EXTRA HALFBRITE
GENLOCK AUDIO
DBLPF

HOLDNMODIFY

VP HIDE
SPRITES
MODE 640

Di vides the screen into a border
character area
Turns on Hold-and-Modify
mode

Allows sprites to be used
Turns on the highest resolu­
tion graphics for the screen
(640x400)

Choose the value two (normal) for your example screen:

view modes: dc.w 2 ;Representation mode

The following word is constructed in such a way that each bit has its own
meaning. Use this to set what sort of screen it is. Choose 15 so the
screen is a "Custom screen", which allows you all of the options.

screen_type: dc.w 15 ;Screen type: custom screen

Next there's a pointer to the character set to be used for all output to the
screen. If you don't want to install your own character set, just put a zero
here, and the standard character set is used.

font: dc.l o ~haracter set: Standard

Next there's a pointer to the text that's used as the name of the screen.
The text ends with a zero, just like window names must.

title: dc.l name ;Pointer to title text

Next comes a long word that defines the gadgets. These gadgets represent
the functions, like "Bring forward", that can be accessed via a mouse click
in the screen. The long word in this table is a pointer to a list which
specifies the gadgets. These aren't the system gadgets. However, you're
only using system gadgets here, so put a zero here.

gadgets: dc.l o ;No gadgets

167

7. Working with Intuition Amiga Machine Language

168

Finally there's a long word that you only need if you want to use a spe­
cial bit map just for your screen. Since this isn't the case, just put a zero
here.

bitmap: dc.l o ;No bit map

That's it for the list entries that you need to define the screen. You still
need the text for the name of the screen. Enter the following:

sname: dc.b 'Our Screen' ,0 ;Screen title

Here's a quick overview of the list:

align
screen defs: ;* The screen ta
x_pos: dc.w 0 ;X-Position
y pos: dc.w 0 ;Y-Position -
width: dc.w 320 ;Width
height: dc.w 200 ;Height
depth: dc.w 2 ;Number of bit planes
detail _pen: dc.b 0 ;Color of the text, etc ...
block _pen: dc.b 1 ;Background color
view modes: dc.w 2 ;Repressentation mode
screen_type: dc.w 15 ;Screen type: custom

;screen
font: dc.l 0 ;Character set: Standard
title: dc.l sname ;Pointer to title text
gadgets: dc.l 0 ;No gadget s
bitmap: dc.l 0 ;No bit map
sname: dc.b • Our Screen' ,0 ;Screen tit le

Once you've decided on the parameters, it's very easy to open the screen.
You need Intuition's OpenScreen function. It's offset is -198, and it only
needs one parameter, the address of the parameter table. The program frag­
ment looks like this:

OpenScreen = -198
bsr openint
bsr scropen

scropen:
move.l intbase,a6

lea screen_defs,aO
jsr openscreen(a6)
move.l dO,screenhd
rts

screen def s:

;Open Intuition
;Open screen

;* Open screen
;Intuition base address
;in A6
;Pointer to table
;And open
;Save screen handle
;Return to main program

;Table info follows

Now the Amiga's Workbench screen is covered by your screen. Now you
can do what you want with it until the program is done. Afterwards, the

Abacus 7. Working with Intuition

screen must be closed again, so that you can see the Workbench screen
again.

Use the CloseScreen function (offset -66) to do this. The only parameter
it needs is the pointer to the screen structure you got back from the Open­
Screen function.

CloseScreen = -66

scrclose: ;*Close screen
move.l intbase,a6 ;In t ui t ion base addres s

;in A6
move.l screenhd,aO ;Screen handle in AD
jsr CloseScreen (a6) ;Close screen
rts ;Done

The long word that OpenScreen returned to you is a pointer to a screen
structure that contains all the needed data about the screen. Besides the
data which was given, there is a pointer in the screen area for individual
bit planes, etc ...

The form of this structure is fairly complicated and contains some data
that you can't use. Several of the parameters are interesting, however.
Here's a selection of the usable parameters:

No.
o
4
8
$A
$C
$E
$10
$12
$14
$16
$IA
$28
$CO
$C4
$C8
$CC

Name
(N extScreenL)
(FirstWindow)
(LeftEdge.W)
(TopEdge.W)
(Width.W)
(Height.W)
(MouseY.W)
(MouseX.W)
(Flags.W)
(TitleL)
(DefaultTitle)
(Font.L)
(PlaneO.L)
(Plane1.L)
(Plane2.L)
(Plane3.L)

Function
Pointer to next screen
Pointer to first window structure

Position of the screen
Width
Height

Mouse position in the screen
Screen flags
Pointer to title text
Pointer to normal title
Pointer to character set
Pointer to the bit plane 0
Pointer to the bit plane 1
Pointer to the bit plane 2
Pointer to the bit plane 3

An example of an application for the plane pointer is writing and using
your own character routine. Next you want to move the address of a plane
into an address register as follows:

move.l screenhd,aS
move.l $cO (as) ,as

;Screen pointer in AS
;Bi t plane O-pointer in AS

169

7. Working with Intuition Amiga Machine Language

170

If you want to try this, do the following:

move.l screenhd,aS ;Screen pointer in AS
move.l $cQ (as; ,as ;Bit plane O-pointer in AS
move #$20,dO ;Counter DO=$20

lopl:
move dO,(aS) ;Write counter bits in picture
add.l #80,aS ;Address +80, next line
dbra dO,lopl ;Continue until DO<O

This program draws a white, square pattern that corresponds to the bit
pattern for the numbers $20 to O. This isn't a particularly useful program,
but it shows how easy it is to write from a machine language program
directly to the screen. If you change the offset in the second line to $C4,
the pattern is read.

You can move the entire screen with the normal technique of moving the
mouse pointer into the upper border and moving it up and down with the
left mouse key depressed. You can do the same thing with a program.

Let's move the screen without the mouse. Use the joystick for demonstra­
tion purposes. Put the joystick in port two. As you saw in the chapter on
the hardware register, you can read memory location $DFFOOC to find in­
formation about the joystick. You can find the direction the screen should
be moved here.

Moving the screen requires another Intuition function. You use the Move­
Screen function which has an offset of -162 and needs three parameters to
do this. The parameters are:

In AO

InDI
InDO

the pointer to the screen structure that you got back in DO when
you opened the screen. (You saved it in "screenhd".)
the desired movement in the Y -direction, the vertical direction
the horizontal movement in the X-direction. The variant doesn't
work so you can only move the screen vertically.

Insert the following lines in your program:

MoveScreen =-162

scrmove:

move.l intbase,a6
move.l screenhd,aO
clr.l dO

;* Move screen DO to the right
; and D1 down
;Intuition base address in A6
;Screen handle in AO
;No horizontal movement

jsr MoveScreen (a6) ;Move screen
rts ;Done

Abacus 7. WorkIng with Intuition

Now your looking at a complete program that goes through the following
steps:

1. Opens the Intuition library
2. Opens a screen.
3. Moves the screen in the direction specified by the joystick in

port two.
4. Closes the screen when the fire button is hit.
S. Closes the Intuition library.
6. Ends.

Here is the complete program including the subroutines, so you'll have it
all in one spot:

;* * Demo progr amm to open and move a screen s * *
MoveScreen = -162
OpenScreen = -198
CloseScreen = -66
CloseLibrary = -414
Open Lib = -408 ;Open library
ExecBase = 4 ;EXEC base address
joy2 = $dffOOc ;Joystick 2 Data
fire = $bfeOOl ;Fire button 2: Bit 7
run:

bsr openint ;Open Intuition
bsr scropen ;Open screen
move joy2,d6 ;Save joystick info

loop:
tst.b fire ;Test fire button
bpl ende ;Pressed down: done
move joy2,dO ;Basic info in DO
sub d6,dO ;Subtract new data
cmp #$0100,dO ;Up?
bne noup ;No
move.l #-1,d1 ;dy=-l direction y
bsr scrmove ;Move up
bra loop

noup:
cmp #$OOOl,dO ;Down ?
bne loop ;No
move.l #l,dl ;dy=l
bsr scrmove ;Move down
bra loop

ende:
bsr scrclose ;Clo se screen
bsr closeint ;Close Intuition
rts ;Done !

openint: ;* Initialize and open system
move.l ExecBase,a 6 ;EXEC base address
lea IntName,al ;Name of Intuition library
jsr OpenLib(a6) ;Open Intuition
move.l dO,intbase ;Save Intuition base address
rts

171

7. Working with Intuition Amiga Machine Language

172

closeint:
move.l
move.l
jsr
rts

scropen:
move.l
lea
jsr
move.l
rts

scrclose:
move.l
move.l
jsr
rts

scrmove:
move.l
move.l
clr.l
jsr
rts
Align

screen defs:
x_pos:
y_pos:
width:
height:
depth:
detail_pen:
block pen:
view modes:
screen type:
font:
title:
gadgets:
bitmap:
intbase:

screenhd:
IntName:

align
sname:

align
end

;* Close Intuition
execbase,a6 ;EXEC base address in A6
intbase,al ;Intuition base address in Al
CloseLibrary (a6) ;Close Intuition

intbase,a6
screen_defs,aO
openscreen(a6)
dO,screenhd

intbase,a6
screenhd,aO
CloseScreen(a6)

intbase,a6
screenhd,aO
dO
MoveScreen (a6)

dc.w 0
dc.w 0
dc.w 320
dc.w 200
dc.w 2
dc.b 1
dc.b 3
dc.w 2
dc.w 15
dc.l 0
dc.l sname
dc.l 0
dc.l 0
dc.l 0

dc.l 0

;Done
;* Open screen
;Intuition base address in A6
;Pointer to table
;Open
;Save screen handle
;Return to main program
;* Close Screen
;Intuition base address in A6
;Screen handle in AO
;Close screen
;Done
;Move screen DO right/Dl down
;Intuition base address in A6
;Screen handle in AO
;No horizontal movement
;And move
;Done

;* Screen table begins here
;x-position
;Y-position
;Width
;Height
;Number of bit planes
;Text color = white
;Background color ~ red
;Repressentation mode
;Screen type: Custom screen
;Standard character set
;Pointer to title text
;No gadgets
;No bit map
;Base address of

Intuition
;Screen handle

dc.b ' int u it ion .libr ary , ,0

dc.b 'Our Screen' ,0 ;Screen title

From this example, you can see how easy scrolling actually is. Another
easy thing to do is to use the DisplayBeep function. It has offset -96; the
only parameter it needs is the screen pointer that you stored in the
"screenhd" memory block. This function covers the screen with an orange
color for a short while. The screen isn't changed. The beep function can
be used as follows:

Abacus

DisplayBeep = -96

move.l intbase,a6
move.l screenhd,aO
jsr DisplayBeep(a6)

7. Working with Intuition

;Intuition base address in A6
;Screen pointer in AO
;Light up screen

If you put a zero instead of a screen pointer in AO, the whole screen
blinks.

Good, now you have your own screen that you ~an move up and down.
What good is it if you can't put anything on it? Let's open a window on
the screen!

173

7. Working with Intuition Amiga Machine Language

7 . 2 Open window

174

As you saw in the chapter on program initialization, it's easy to open a
window with the DOS library. You can't use this method on your own
screen however. You need to use another method that can open any win­
dow on any screen.

Intuition has a function called OpenWindow which handles this sort of
work. It has an offset of -204 and needs only one parameter, a pointer to a
window defmition table. This pointer goes in register AO.

This table is very similar to the one used to define the screen. The first
four values specify the X- and Y-positions, the width, and the height of
the window to be opened. Here's an example:

align
window defs:

dc.w 10
dc.w 20
dc.w 300
dc.w 150

;x-position
;Y-position
;Width
;Height

Next come two bytes that define the color of the letters and the back­
ground:

dc.b
dc.b

1

3
;White letter color
;On a red background

The next long words contain the IDCMP flag in its bits. The bits deter­
mine the circumstances under which Intuition sends a message to the
program. The bits have the following meaning:

Abacus 7. Working with Intuition

Bit Value Name Meaning (Report iQ
0 $000001 SIZEVERIFY
1 $000002 NEWSIZE Window size changed
2 $000004 REFRESHWINDOW
3 $000008 MOUSEBUTTONS Mouse key hit
4 $000010 MOUSEMOVE Mouse moved
5 $000020 GADGETDOWN A special gadget chosen
6 $000040 GADGETUP Same as above
7 $000080 REQSET
8 $000100 MENUPICK A menu item chosen
9 $000200 CLOSEWINDOW A window closed
10 $000400 RAWKEY A key pressed
11 $000800 REQVERIFY
12 $001000 REQCLEAR
13 $002000 MENUVERIFY
14 $004000 NEWPREFS Preferences modified
15 $008000 DISKINSERTED A disk put in
16 $010000 DISKREMOVED A disk taken out
17 $020000 WBENCHMESSAGE
18 $040000 ACTIVEWINDOW A window activated
19 $080000 INACTlVEWINDOW A window deactivated
20 $100000 DELTAMOVE Report relative mouse move-

ment

If you want your first window to respond only by clicking on the close
symbol, write the following:

dc.l $200 ;IDCMP flags: CLOSEWINDOW

Next comes a long word whose bits determine the window's type. You
can use this to construct a window to your exact specifications. This is
quite different from windows opened with the DOS function. The bits
mean:

175

7. Working with Intuition Amiga Machine Language

176

Bit Value Name Meaning (Report if)
0 $0000001 WINDOWSIZING Window size is changeable
1 $0000002 WINDOWDRAG Window is moveable
2 $0000004 WINDOWDEPTH Window covering is possible
3 $0000008 WINDOWCLOSE Window close symbol
4 $0000010 SIZEBRIGHT
5 $()()()()()20 SIZEBBOTTOM
6 $0000040 SIMPLE REFRESH New drawing manual
7 $0000080 SUPER BITMAP Save the window's contents
8 $0000100 BACKDROP Move window back
9 $0000200 REPORTMOUSE Report mouse coordinates
10 $0000400 GIMMEZEROZERO
11 $0000800 BORDERLESS Window without border
12 $0001000 ACTIVATE Window active
13 $0002000 WINDOWACTIVE
14 $0004000 INREQUEST
15 $0008000 MENUSTATE
16 $00 1 0000 RMBTRAP Right mouse key: no menu
17 $0020000 NOCAREREFRESH No refresh message
24 $1000000 WINDOWREFRESH
25 $2000000 WBENCHWINDOW

To refresh is to rebuild the window contents when necessary, for instance
when the window's size is changed. If none of the refresh bits are set,
you're in Smart-Refresh-Mode. In this case, Intuition takes care of re­
freshing the window. This is the easiest method.

If you choose the value $l00F as the type for your example window, the
window is active once it's opened, and it has all the system gadgets:

dc.l $lOOf ;ACTIVATE and all gadgets

The next long word in the list allows you to use your own gadgets in the
window. This long word is a pointer to the structure of a your gadget.
Since you don't want this, just put a zero here.

dc.l o ;First gadget:no gadgets of our own

The next long word is a pointer to a graphics structure so you can design
your own symbol for checking menu points. Put a zero here. You'll use
the standard sign:

dc.l o ~heckMark:Standard

The next list entry is a pointer to the text for the window name. This text
must be closed by a null byte.

dc.l windowname ;Pointer to window name

Abacus 7. Working with Intuition

The next long word is a pointer to the screen structure that you got back
after calling the OpenScreen function. The easiest way to do this is to
save the pointer to this location in the buffer:

screenhd: dc.l o ;Screen pointer

The next long word is a pointer to a bit map if you want one of your own
for the window. Since you don't want one, put a zero here:

dc.l o ;No bitmap of our own

Next come four values that set the maximum and minimum width and
height of the window:

dc.w 150 ;Smallest width
dc.w 50 ;Smallest height
dc.w 320 ;Maximum width
dc.w 200 ;Maximum height

The last value in the list is the screen type of the screen the window is
located in. Put a 15 here. You're using our screen as a Custom screen:

dc.w 15 ;Screen type: custom screen

Here's a quick overview of the whole list:

align
window defs:

dc.w 10 ;X-position
dc.w 20 ;Y-position
dc.w 300 ;Width
dc.w 150 ;Height
dc.b 1 ;White print color
dc.b 3 ;On a red background
dc.l $200 ;IOCMP flags: CLOSEWINDOW
dc.l $100f ;ACTIVATE and all gadgets
dc.l 0 ;First gadget: no gadgets

;of our own
dc.l 0 ;CheckMark:Standard
dc.l windowname ;Pointer to window name

screenhd: dc.l 0 ;Screen pointer
dc.l 0 ;No bitmap of our own
dc.w 150 ;Smallest width
dc.w 50 ;Smallest height
dc.w 320 ;Maximum width
dc.w 200 ;Maximum height
dc.w 15 ;Screen type: custom

;screen
;And here comes the window name:
windowname: dc.b 'Our Window',O

align

177

7. Working with Intuition Amiga Machine Language

178

Insert these lines in the program you listed above. Here are the two sub­
routines for opening and closing the window:

OpenWindow
CloseWindow

windopen:

= -204
= -72

move.l intbase,a6
lea windowdef,aO
jsr openwindow(a6)
move.l dO,windowhd
rts

windclose:
move.l intbase,a6
move.l windowhd,aO
jsr closewindow(a6)
rts

windowhd: dc.l o

;Intuition base address in A6
;Pointer to window definition
;Open window
;Save window handle

;Intuition base address in A6
;Window handle
;Close window

;Window handle

Now you can insert a "bsr windowopen" after the "bsr scropen" and a "bsr
windclose" before the "bsr scrclose" command. Once you've started the
program, move the window around in the screen. You'll find that you
can't move the window out of the screen with the mouse.

The window in the example has the close gadget in the upper left comer.
Normally if you click it, the window is closed. Try clicking it. You'll
find that nothing happens.

The display of this and all other gadgets, as well as other events must be
programmed in, since Intuition doesn't know which action causes which
event. We'll take a look at how to handle this in the next chapter.

Abacus 7. Working with Intuition

7.3 Requesters

If you only have one disk drive, you've certainly seen the Amiga mes­
sage, "Please insert xxx in unit 0", a lot. This window is another window
that has two fields for clicking. This sort of message with a choice of
options is called a requester.

You want to take a look at how to program a requester. First, you need a
window for the requester to appear in. You opened a window of this sort
in the example program.

To display a requester, use the Intuition function AutoRequest (offset -
348). It takes care of drawing and managing the requester. This function
needs the following parameters:

InAO
InAl

In A2
InA3
InDO

InDl
InD2
InD3

The pointer to the window structure that you put in "windowhd"
A pointer to the text structure that should stand over the choice
buttons
Same as above for the text of the left button.
Same as above for the right button.
The IDCMP flag which lets you know what event should go
with the clicking of the left button
Same as above for the right button.
The width of the whole requester.
The height of the requester.

Insert the following lines in your program:

AutoRequest = -348

request:
move.l windowhd,aO
lea btext,al
lea 1 text,a2
lea rtext,a3
move.l #O,dO
move.l # O,dl

move.l #180,d2
move.l #80,d3
move.l intbase,a6
jsr autorequest(a6)
rts

;Pointer to window structure

;Pointer to text structure

;Left activates by clicking
;Right activates by
clicking
;Width and
;Height of the Requester
;Intuition base address
;Display Requester

179

7. Working with Intuition Amiga Machine Language

180

The flags passed in DO and Dl offer some interesting possibilities. The
system messages that tells you to enter a particular disk are overlooked
when the DISKINSERTED flag is similar. Putting a disk in brings about
the same responce as clicking the "Retry" button.

What's new is the use of a text structure. Use three of them. Text struc­
tures are lists that contain entries for the text that you need.

These lists begin with two bytes that are used to define the color. The
ftrst byte is the color of the text. The second is for the background color.
Here this doesn't have any meaning.

btext:
dc.b
dc.b

2
o

;Black text color
;Background color

The next byte speciftes the character mode. A zero means that the text is
output normally. A four means the text is output inverted.

dc.b o ;Normal text representation

The next entries are words. For this reason the addresses must be even, so
you need to either insert another byte or use the "align" pseudo-op. The
following words are the X- and Y -position of the text relative to the upper
left comer of requester.

dc.w
dc.w

10
5

;x-posi t ion
;Y-position relative to upper corner

Next, there's a pointer to the character set that is used. Put a zero here to
use the standard set

dc.l o ;Standard character set

Next you need to give the address of the text that should be output. This
text must be closed with a null byte.

dc.l text ;Pointer to text

You need a long word at the end of the list that is either a pointer to
another text or a zero if no more text is needed.

dc.l o ;No more text

Here are the three text structures that you need for the example:

Abacus 7. Working with Intuition

btext:

body txt:

ltext

lefttext:

rtext:

dc.b 0,1
dc.b 0
align
dc.w 10,10
dc.10
dc.1 body txt
dc.10

;Text structure for the title
;Color
;Mode

;Text position
;Standard font
;Pointer to text
;No more text

dc.b "Requester Text" ,0
align

dc.b 0,1
dc.b 0
align
dc.w 5,3
dc.l 0

;Text structure of the left button
;Color

dc.l lefttext
dc.l 0
dc.b "left",O
align

dc.b 0,1
dc.b 0
align
dc.w 5,3
dc.l 0
dc.l righttext
dc.l 0

;Mode

;Text position
;Standard font
;Pointer to text
;No more text

;Color
;Mode

;Text position
;Standard font
;Pointer to text
;No more text

righttext: dc.b "right",O
align

After calling the requester, DO contains the information about which of
the buttons were pressed, and in which button the event took place. If DO
is zero, it was the right button. If it is one, it was the left button.

181

7. Working with Intuition Amlga Machine Language

7.4 Event handling

182

Pretend you've opened a window that has the close symbol, and you want
the program to react to this symbol being clicked. You need a signal from
Intuition that lets you know that an event has taken place. This signal is
called a message.

The IDCMP flag of the window specifies which events should cause
Intuition to send a message. By setting the bits for WINDOWCLOSE,
you can allow a message to be sent when the close symbol is clicked.

To get the message, you can use the EXEC function GetMsg (offset -
372). It needs the source address of the event as a parameter. Here the
source is the User port (which doesn't have anything to do with the User
port on old Commodore computers).

The user port contains a table which has entries which specify the events
that have taken place and related things like mouse position and time.

How do you find the User port? Use the pointer to the window structure
that you got back from the OpenWindow function and stored in the
"windowhd" memory block.

This pointer points to the window structure of this window. This struc­
ture consists of a number of entries. Some are copies of the parameters
from our window defmition table. We won't cover all the entries, because
most won't be interesting to you. You're more interested in the pointer to
the user port. It's in the window structure.

You can find this in the long word that begins in the 86th byte of the
structure. You can get this long word with the following lines of code:

move.l windowhd,aO
move.l 86 (aO) ,aO

;Pointer to structure in AO
;User port pointer in AO

You can call the GetMsg function with this pointer in AO by using the
following lines of code in your program:

Abacus

GetMsg = -372

move.l windowhd,aO
move.l 86 (aO) ,aO
move.l ExecBase,a6
jsr GetMsg (a6)

7. Working with Intuition

;Pointer to structure in AO
;User port pointer in AO
;EXEC base address in A6
;Get message

This function returns a value in the DO register. This value is a pointer to
another structure, the Intuition Message Structure. If there's a zero in DO,
no event has taken place.

The long word that starts at the 20th byte in this structure contains the
information about which event took place. Evaluating the information is
easy, since the bits of this long word have the same meaning as the
IDCMP flag that you described when you looked at opening windows.

Put the lines above after "loop" and then insert the following:

move.l dO,aO
move.l 20(aO),d6
tst.l dO
bne end

;Message pointer in AO
;Save event in 06
;Oid an event take place?
;Yes!

Now you can end this program by clicking the close symbol. This way
you can find out if an event has taken place. You can use D6 to determine
what event took place. In the example, D6 contains the number
$00000200, which means that the close symbol was clicked.

To see if this works with other events, change the $200 IDCMP flag to
$10200 in the window definition table. When you've assembled and
started this version, take the disk out of the drive-the program termin­
ates.

The IDCMP flags that you've got now cause the clicking of the close
symbol and the taking out of the disk (DISKREMOVED) to be reported.
If you want to find out which of the events took place, you can look in
D6. It has a $200 in it if the window was closed, a $10000 if the disk
was removed.

183

7. Working with Intuition Amiga Machine Language

7 . 5 Menu programming

184

Now let's look at one of Intuition's more interesting capabilities: menu
programming. By using menus, you can make your programs extremely
user-friendly.

There are a lot of ways for you to use menus. You can make menu points
unusable, output submenus, choose the type of menu entries (allow text
or pictures to be output), etc ... To have lots of options, you need some
parameters.

Let's produce a menu with the SetMenuStrip function (offset -264) of
Intuition. The function only needs two parameters, a pointer to the menu
structure of the window to be drawn and a pointer to the window structure
of the window in which the menu is to function. Each window can have
its own menu that is active when the window is activated.

Here's the subroutine to set up the menu:

SetMenuStrip = -264

setmen u:
move.l
move.l
lea
jsr
rts

intbase,a6
windowhd,aO
menu,al
SetMenuStrip (a6)

Here's a routine to erase the menu:

ClearMenuStrip = -54

clearmenu:
move.l intbase,a6

;* Initialize a menu
;Intuition base address in A6
;Pointer to window structure
;Pointer to menu structure
;Call function

;Intuition base address in A6
move.l windowhd,aO ;Pointer to window structure
jsr ClearMenuStrip(a6)
rts

You've already got the pointer to the window structure. Let's look at the
menu structure you need for the menu. You need to build a structure like
this for each menu-for each menu title that appears when you press the
right mouse key.

This structure is a table with the following form:

Abacus 7. Working with Intuition

First there is a long word that points to the menu structure of the next
menu. If the current menu is the last one, a zero goes here.

align
menu:

dc.l menul ;Pointer to the next menu

Next come two words which contain the X- and V-position of the menu
title:

dc.w
dc.w

20
o

;X-position
;Y-position

Next, use two words to store the menu title's width and height in pixels:

dc.w
dc.w

50
10

;Width
;Height of menu title

The next word contains the flag bit that determines whether the menu is
available or not. An unavailable menu either has gray entries or they are
drawn weakly. If the flag bit, bit 0, is set the menu is available. Other­
wise, it is not

dc.w 1 ;Menu available

Now comes a long word which functions as a pointer to the text which is
used as the menu title. Make sure that the length isn't larger than the
width entry allows! Otherwise unpleasant things will happen.

dc.l menutext ;Pointer to title text

Next comes a long word which functions as a pointer to the structure of
the flrst menu entry of this menu. Each menu entry needs its own struc­
ture.

dc.l menuitem01 ;Pointer to the first menu item

The last entries in the table are four words that are reserved for internal
functions. They must be here.

dc.w 0,0,0,0 ;Reserved words

That's the structure of the flrst menu. This structure's first long word
points to the next structure which has the same form. The pointer is set
to zero in the last menu.

You still need the structure of the menu entries. These structure tables
have the following form:

185

7. Working with Intuition Amiga Machine Language

186

They start with a pointer to the next menu item. This pointer is set to
zero for the last entry.

align
menuitemOl:

dc.l menuitem02 ;Pointer to next menu item

Next come four words: the X- and Y -position, the width, and the height
of the box the menu entry goes in. The size becomes obvious when the
item is chosen by having the right mouse key clicked on it. Then the box
becomes visible. As you can see, the next word is determined in the flags.
First let's set the position and size of the menu point, though:

dc.w 0 ;X-position of an entry
dc.w 0 ;Y-position
jc.w 90 ;Width in pixels
dc.w 10 ;Height in pixels

The position entries are relative to the upper left comer of the menu that
is pulled down.

The following word was described above: it contains flags for entries to
this menu item. There are several interesting variations possible. The fol­
lowing flag bits are contained in this word:

Bit Value Name Meaning when set
0 $0001 CHECKIT Point is checked when chosen
1 $0002 ITEMTEXT Text menu item
2 $0004 COMMSEQ Choice can be made with keys as well
3 $0008 MENUTOGGLE Check turned on and off
4 $0010 ITEMENABLED Menu item available
6 $0040 HIGHCOMP Item inverted when chosen
7 $0080 HIGHBOX Item framed when chosen
8 $0100 CHECKED Item is checked

Here's a description of the bits:

CHECKIT

ITEMTEXT

COM SEQ

If this bit is set, a check or a user-defined drawing is put
in front of the text when the item is chosen. The text
should begin with two blanks.

The menu item is a normal text if this bit is set. Other­
wise a drawing is output.

By setting this bit and entering a character, this menu
point can be chosen by pressing the right <Amiga> key
and the key that was input. The input character is then
displayed in the menu with the Amiga symbol. There
needs to be space available for this.

Abacus 7. Working with Intuition

MENUTOOGLE If this bit is set and checking is allowed (bit 0), the
second time this point is chosen the check is erased,
the next time it is displayed again, etc ...

ITEMENABLED Erasing this bit makes the menu item unavailable.

HIGHCOMP If this bit is set, the box you've defined is inverted
when this menu item is chosen by the mouse
pointer.

HIGHBOX In this mode, the box is framed when it is chosen.

The two previous bits determine the mode of the chosen menu item. The
following combinations are possible:

HIGHIMAGE

HIGHNONE

CHECKED

If both bits are cleared, choosing the bit causes a self­
defmed drawing to be output

When both bits are set, there isn't any reaction to
choosing this item.

This bit can be set by either the program or Intuition.
It lets you know if the menu text has a check next to
it or not. You can use this to fmd out if the item was
checked by testing bit eight. If it's set, the item was
checked. You can also use it to cause the item to be
checked.

You're chosing the mode CHECKlT, ITEM TEXT, COMMSEQ, MENU­
TOGGLE, lTEMENABLED and HIGHBOX for the example:

dc.w %10011111 ;Mode flag

Let's get back to the structure of the menu items. After the flag word,
there is a long word whose flag bits determine whether this menu point
can tum off another one. Set this to zero:

dc.l o ;No connection

Now comes the pointer to the structure of the text that should be
displayed. If the lTEMTEXT bit isn't set, this pointer must point to the
structure of a drawing. If nothing should be shown, you can set this to
zero. Use a text in the example and write the following:

dc.l menu01text ;Pointer to menu text struct ure

187

7. Working with Intuition Amlga Machine Language

188

The following long word only has a meaning if the HIGHIMAGE flag is
set. Then this long word points to the text or the drawing that should be
displayed when the menu item's box is clicked. Otherwise the long word
is ignored, so insert a zero:

dc.l o ;NO drawing when clicked

The next entry is a byte that is used for input of keyboard characters,
which together with the right <Amiga> key can be used to choose the
menu item. This only works if the COMMSEQ bit is set. Place a charac­
ter here:

dc.b 'A' ;Choose item using <AMIGA> / 'A'

Since the next item is a long word, you need an "align" pseudo-op here.
Next comes the long word that points to the menu item structure of a
submenu. The submenu is automatically shown when this menu item is
clicked. You can't nest them any deeper, however, so this long word is
ignored for submenus.

If you don't want a submenu to this item, put a zero here:

align
dc.l o ;No submenu

The next and final long word is written to by Intuition if you choose
several menu items. In this case, the menu number of the next menu item
chosen goes here.

dc.l o ;Preparation

That's the structure for a menu item. You still need the text structure for
the text of the item. This isn't complicated, but it makes you get into
fme details about the form of the menu. You've already learned about this
text structure when you looked at requesters, so we'll skip an explanation.

Here is the complete structure of an example menu. You can use two
menus, each with two subpoints. The second menu point of the left menu
has a submenu with two entries. You ought to type this program in, so
that you can experiment with it. You can also use this example to eval­
uate the clicked menu item.

Abacus 7. Working with Intuition

;** Complete menu structure for example menu**
menu:

dc.l menu1
dc.w10,30
dc.w 50,10
dc.w 1
dc.l menuname
dc.l menuitem01
dc.w 0,0,0,0

menuname:
dc.b "Menu 1",0

align
menu1:

dc.l °
dc.w 80,0
dc.w 50,10
dc.w 1
dc.l menuname1
dc.l menuitemll
dc.w 0,0,0,0

menuname1:
dc.b "Menu 2",0

align
menuitem01:

dc.l menuitem02
dc.w 0,0
dc.w 130,12
dc.w $9f

dc.l °
dc.l text01
dc.10
dc.b HIli

align
dc.10
dc.wO

text01:
dc.b 0,1

dc.b °
align

dc.w 5,3
dc.10
dc.l text01txt
dc.10

text01txt:
dc.b" Point 0.1",0

align
menuitem02:

dc.10
dc.w 0,10
dc.w 130,12
dc.w$57
dc.10
dc.l text02
dc.10
dc.b "2"

align

;No next menu
;X/y
;Width/Height
;Menu enabled
;Menu title
;Menu entry

;First menu name

;No further menu
;See above

;Second menu name

;First menu item
;Pointer to next entry
;X,y
;Width, Height
;Flags
;Exclude
;Pointer to text structure
;Select fill
;Command

;Subitem: none
;Next select: no

;Colors
;Mode: overwrite

;x/y position
;Standard character set
;Pointer to text
;No more text

;Second menu item

;Activate with <Amiga>/' 2'

189

7. Working with Intuition

190

text02:

dc.10
dc.w 0

dc.b 0,1
dc.b 0

align
dc.w 5,3
dc.10
dc.l text02txt
dc.10

text02txt:
dc.b" Point 0.2",0

align
menuiteml1:

dc.l menuitem12
dc.w 0,0
dc.w 90, 12
dc.w $52
dc.10
dc.l textll
dc.l 0
dc.b 0

align
dc.lO
dc.w 0

textll :
dc.b 0,1
dc.b 0

align
dc.w 5,3
dc.l0
dc.l textlltxt
dc.10

textl1txt:
dc. b "Point 1.1",0

align
menuiteml2:

dc.10
dc.w 0,10
dc.w 90,12
dc.w $92
dc.lO
dc.l text12
dc.10
dc.b 0

align

text 12:

dc.l submenuO
dc.w 0

dc.b 0,1
dc.b 0

align
dc.w 5,3
dc.10
dc.l text12txt
dc.10

Amlga Machine Language

;First menu point of the 2nd menu
;Pointer to second menu point

;Second menu item of second menu
;No more items

;Pointer to submenu

Abacus

Menu 1

text12txt:
dc.b "Point 1.2",0

align
submenuO:

dc.1 submenu1
dc.w 80,5
dc.w 90,12
dc.w $52
dc.10
dc.1 textsO
dc.10
dc.b 0

align
dc.10
dc.w 0

text sO:
dc.b 0,1
dc.b 0

align
dc.w 5,3
dc.1 O,textsOtxt,O

textsOtxt:
dc.b"SPoint 1",0

align
submenu1:

dc.lO
dc.w 80,15
dc.w 90,12
dc.w $52
dc.lO
dc.l texts 1
dc.lO
dc.b 0

align
dc.lO
dc.w 0

texts1:
dc.b 0,1
dc.b 0

align
dc.w5,3
dC.lO
dc.l texts1txt
dc.lO

texts1txt:
dc.b "s Point 2",0

align

7. Working with Intuition

;First point of submenu
;Pointer to next point

;Submenu, second item

The menu items in this example have the following properties as a result
of their flags:

The first item, "Point 0.1", can be chosen using the right <Amiga> key
and the "1" key. This point alternates between checked and not checked,
which can easily be used to check out the key function. If the item is

191

7. Working with Intuition Amiga Machine Language

Menu 2

192

checked and you hit both keys, the check disappears and vice versa. The
box at this point is framed when the mouse pointer clicks on it.

The second item, "Point 0.2" can be chosen using the right <Amiga> key
and the "2" key. This item is checked the first time it is chosen.
However, in contrast to the item above, it can't be erased. The box of this
item is inverted when clicked.

These two points can't be chosen using keys. The box of the upper item
is inverted when clicked on; the lower one is framed. When you click the
second item, "Point 1.2", a submenu with two entries is displayed.

Experiment with this structure a little bit. Change some values and see
what happens. As you can see, menu programming isn't as bad as you
thought, and it offers a lot of options (but you'll have to do lots of
typing!).

When you're done experimenting, you'll want to produce your own pro­
gram with menus. How does the program find whether a menu item in a
menu has been clicked on?

You already looked at one way to find out the menu state. You can test
the CHECKED bit in the flag word of a menu item. If this is set, the
user clicked on this item with the mouse.

This only works if checking is allowed for the item being tested. You
could allow all the menu items to be checked, but this still isn't a good
solution-it requires testing all the flag bits of all the menus one after the
other. That makes for very boring programming.

You've already learned about finding about events from Intuition. You've
moved the message about which event took place into D6, and you can
look at it to fmd out what happened.

If you set the the eighth bit, the MENUPICK bit, of the IDCMP flag
long word in the window definition, the choice of a menu point is re­
ported. Put the following lines in your loop in the main program.

loop:
move.l execbase,a6 ;EXEC base address in A6
move.l windowhd,aO ;Window structure pointer
move.l 86(aO),aO ;User point pointer in AO
jsr GetMsg (a6) ;Get message
tst.l dO ;What happened?
beq loop ;Nothing happened
move.l dO,aO ;Message pointer in AO
move.l $14 (aO) ,d6 ;Event in D6

Abacus 7. Working with Intuition

If the program makes it out of the loop, an event has taken place. You
have the event's flag in the D6 register. You can evaluate the event using
eMP or BTST to find out which flag bits are set. You can then execute
the function corresponding to the set bit. You can use lines like the fol­
lowing ones:

cmp
beq

#$200,d6
ende

;WINOOWCLOSE?
;Yes: program end

These lines terminate the program when the window is closed.

If the user chose a menu item, there is a $100 in the D6 register. You
now need to determine which item it was.

You can find this information in a word that comes right after the long
word with the event flags in the message structure. Write:

move $18 (aO) ,d7

You now have the code for the clicked menu item in the D7 register. If
the user just pressed the right key and let it go without choosing a menu
item, you'll find a $FFFF here. This word doesn't contain just one, but
three pieces of information:

Which menu was the item chosen from?
Which menu item?
Which submenu?

The information is divided in three bit groups. The division is as follows:

Bits 0 - 4 Menu title number
Bits 5 - 10 Menu item number
Bits 11 - 15 Submenu item number

The numbering begins with zero-ie the first menu point of the first
menu has the numbers 0 and O.

To try this out insert the following lines:

move d7,d6 ;Move code into 06
lsr #8,d7 ;Shift right 11 times
lsr #3,d7 ;Submenu item now in 07
clr.l dS
roxr #1,d6 ;Bit 0 in X-flag
roxl #1,dS ;Menu number now in 05
and.l #$7f,d6 ;Issolate lower bits
cmp #$7f,d6 ;No menu item?
beq loop ;No: continue
lsr #4,d6 ;Else menu item in 06

193

7. Working with Intuition Amiga Machine Language

194

ende:

By making a test run with AssemPro, you can easily see if this works
right-just look at the registers after the program is over.

If you, for example, want to write a program with four menus with 10
menu items each, this sort of method is to much work-there are 44
tables. For this reason, let's look at a short program that takes care of the
necessary structure table itself.

The menu structure is built very simply-it doesn't offer submenus or
the option of choosing items via the keyboard. If you want these extras,
you can still use this program, but you'll have to use MOVE commands
to insert the desired flags and pointers.

The input that this program needs is a list of the menu names and the
items in each menu. The addresses of the menu texts go in a table with
the following simple form:

dc.l Menu title 1
dc.l Pointl, Point2, Point3, ... ,0
dc.l Menutitle2
dc.l Pointl, Point2, Point3, ... ,0
dc.l Menu title 3 oder 0

This program is set up in such a way that up to four menus can lie next
to each other (in normal screen resolution), which is often plenty. The
table above ends by putting a zero instead of a pointer to the next menu
title. As you can see, it's pretty simple.

This program is inserted into your big program right behind the
"setrnenu" label. After the "bsr setrnenu" command is executed. the menu
structure is built and initialized at the same time. You don't need to
change the rest of the program, it'll be shorter that way.

Here's the program fragment for the complete "setmenu" routine:

setmenu:
lea
lea
move

menuloop:
clr.l
move.l
tst.l
beq
clr.l
move
add.l
move.l

mentab,aD
menu,al
#lO,dl

d2
al,a2
(aO)
setmenul
(al) +
dl,(al)+
#70,dl
#5D,(al)+

;* Initialize menu structure
;Pointer to text pointer in AD
;Pointer to menu field in Al
;Horizontal menu position~lO

;Vertical menu position~D
;Save address for pointer
;Another menu there?
;No:quit
;"No more menus" preparations
;Set x-position
;And increment
;Y-position and width

Abacus 7. Working with Intuition

move.l
move.l
lea
move.l
clr.l
clr.l

itemloop:
tst.l
beq
lea
move.l
move.l
add
move.l
move
clr.l
lea
move.l
clr.l
clr.l
clr.l
move
clr
move.l
clr.l
move.l
clr.l
bra

menuend:
clr.l
tst.l
tst.l
beq
move.l
bra

#$aOOO 1, (al) +
(aO) +,(a1) +
12(a1),a3
a3, (al) +
(a1) +
(al) +

(aO)

;Height and flag
;Menu title

;Pointe!" to menu item
;Reserved words

;Last entry?
menuend ;Yes: menu done
54(al),a3
a3, (al) + ;Pointer to next item
d2, (al) + ;X- and Y-position
nO,d2 ;Y-position +10
#$5aOOOa,(al)+;Width/Height
#$52, (al) + ;Flag: normal
(a1) + ;No connection
16 (al) ,a3
a3,(al)+
(al)+
(al) +
(a1)+
#$l,(al) +
(al) +
#$50003,(al) +
(al)+
(aO)+,(al)+
(al)+
itemloop

-54(al)
(aO)+
(aO)
setmenul
al,(a2)
menuloop

;Text structure pointer
;No fill structure
;No command, no submenu
;And no continuation
;Set text structure: color
;Mode 0
;X- and Y-positon
~tandardcharacterset

;Text pointer
;No continuation
;Next item ...
;Eventual transfer to next menu
;Erase pointer to next item
;Increment table pointer
;Another menu there?
;No: done
;Pointer to next menu
;And continue

setmenu1:
move.l
move.l
lea
jsr
rts

;* Initialize menu (like before)
intbase,a6 ;Intuition base address in A6
windowhd,aO ;Window structure in AO
menu,a1 ;Pointer to menu structure
SetMenuStrip(a6)

You need three things yet for this program: the memory to be used for the
structure, the table of text pointers and the text Here's an example:

mentab:
dc.l menu1
dc.1 mpll,mp12,mp13
dc.10
dc.l menu2
dc.1 mp21,mp22,mp23
dc.10
dc.lO

;** Menu Text **
menul: dc.b "Menu 1",0

;First menu title
;Menu items
;End of menu 1
;Second menu title
;Menu items
;End of menu 2
;You' re out of menus!

195

7. Working with Intuition Amlga Machine Language

196

mp11: dc.b "Point11",O
mp12: dc.b "Point12",O
mp13: dc.b "Point13",O
menu2: dc.b "Menu 2",0
mp21: dc.b "Point 21",0
mp22: dc.b "Point 22",0
mp23: dc.b "Point 23",0

align
;** storage space for menu structure **
menu: blk.w 500

Make sure that the memory area reserved for the menu structure is big
enough and change the entry "blk.w 500" to the calculated value.

If you use this program, and want to build some special features into the
menu (for instance key commands), you can make entries in the menu
structure table while the program is running. You can find the word (or
byte or long word) that interests you in the table as follows:

For example, to find the keyboard command byte of the second entry in
the first menu, calculate as follows:

Address = Start_address + Menu*30 + (Entry-l) *54 + 26

which in the example comes to:

Address ~ menu + 30 + 54 + 26
~menu+110

The 26 is the distance from the beginning of the MenuItem structure to
the desired byte, the command byte. In this way, you can calculate the
addresses and use MOVE commands to modify the menu to fit your
wishes. By the way, in the example above, the corresponding flag bit
must be set as well, so that the keyboard command is recognized!

Now let's get back to the window. It's nice to have a window that you
can change and close, but you really want to be able to output text in a
windo , w.

Abacus 7. Working with Intuition

7 . 6 Text output

It's very easy to use Intuition's text output function. Use the PrintIText
function (offset -216). It needs four parameters.

In AO A pointer to the RastPort of the window. You can find this in
the window structure.

In Al A pointer to the text structure of the text that should be output
In DO The X-position
In D 1 The Y -position of the text in the window

It's very easy to enter the X- and Y-positions. You've already used the
text structure twice (for requesters and menus).

What's new is accessing the windows's RastPort. The RastPort is a struc­
ture that describes the window. The address is needed by several Intuition
functions.

The pointer to the RastPort starts at the 50th byte in the window struc­
ture. You can access it as follows:

move.l windowhd,aO
move.l 50 (aO) ,aO

;Address of window structure
;RastPort address in AO

Now you've got the address of the RastPort. Let's write a routine that
prints a text. The X- and Y-positions are in DO and D1 respectively and
the address of the text structure in A 1 before the routine is called:

PrintIText = -216

print:
move.l intbase,a6 ;Intuition base address in A6
move.l windowhd,aO ;Address of window structure
move.l 50 (aO) ,aO ;RastPort address in AO
jsr PrintIText (a6) ;Call function
rts

You can try out this routine by using the requester's text that is still in a
structure of the program. Write the following lines before the "loop"
label:

197

7. Working with Intuition Amiga Machine Language

198

lea btext,al
move.l #lO,dO
move.l #30,dl
bsr print

Pointer to text structure in Al
;x-position
;Y-position of text
;Output text

Start the program and the text appears in the middle of the window. If this
doesn't happen, check the color of the text in the text structure. It's prob­
ably zero. Just change it to three, and the text appears in red the next time
you start the program.

Abacus 7. Working with Intuition

7.7 Images

An Image is a drawing that goes in a rectangular field and is defined
bitwise. The disk 8ymbol of the Intuition screen and the system gadgets
in the screen and window borders are examples of such Images.

The rectangle that the drawing goes in can be arbitrarily large, but each
pixel in the rectangle needs its own bit, so programming screen-sized
Images isn't advisable. You'll stick to an Image that requires about 32x16
bits-an Image that's about 3xl cm.

You can make all sorts of images as you've seen looking at window
gadgets. There is an Intuition function that draws an Image: It is the
DrawImage function (offset -114) and it needs 4 parameters:

InAO

In Al
InDO
InDI

The address of the RastPort image is drawn in. You've already
learned how to access this address in the section on the text func­
tion.
The structure address of the Image to be drawn
The relative X-position
The relative Y -position of the drawing

Let's draw this picture in your window. It just takes a simple routine.
You just need to put the address of the Image structure in Al and the
position of the image in DO and Dl before you call it.

DrawImage = -114

draw:
move.l intbase,a6
move.l windowhd,aO
move.l 50 (aO) ,aO

;* Draw Image
;Intuition base address in A6
;Pointer to window structure
;Now, RastPort address in AO

jsr DrawImage (a6) ;Draw image
rts

Now you need the structure ofImage. The structure contains nine entries
which have the following meanings:

The first two entries are words which specify the distance in the X- and Y­
direction from the coordinates that were given to tell where the Image
should be drawn. You' 11 just put two zeros here:

199

7. Working with Intuition Amlga Machine Language

200

image:
dc.w 0,0 ;x- and Y-position

Next come two words which specify the width and height of the Image in
pixels. Let's draw a 32x13 point Image. Enter:

dc.w 32,13 ;Width and height of the Image

The next word in the list specifies the number of planes in the drawing. If
it's a simple Image that only uses two colors, just enter a one. For more
colors, you'll need a correspondingly bigger number. When more colors
are worked with, the bit pattern of the Image must have more data. Let's
just have one bit plane:

dc.w 1 ;Onebitplane:2~1=2 colors

Next comes a long word that points to the data for the Image:

dc.l imgdata ;Pointer to image data

The next two bytes are very interesting. The first byte, the PlanePick
byte, tells which plane of the window or screen the Image data should be
written in. Since you only have one plane, you need to enter the bit plane
of the window. This information is found in the bits of this byte-bit °
stands for plane 0, bit 1 for plane 1, etc ... You also define the color of the
Image with this input. If you enter a two, every set bit of your Image rep·
resents a red point.

dc.b 2 ;Drawing red: plane 1

The second byte, the PlaneOnOff byte, is an interesting enhancement.
Each bit of the window bit plane corresponds to a whole number here.
The only bytes that are interesting though are the ones that are cleared in
the PlanePick byte. If the bit is set in PlaneOnOff, every bit of the Image
in the corresponding plane is set. Otherwise they are cleared. To make
sure that each bit of the Image that isn't set appears white, enter a one.
All the bits of the Image that aren't set, are set in Plane 1 and appear
white.

dc.b 1 ;Background:white

The last entry of the structure is a long word that points to another
Image. You don't need this, so set the long word to zero:

dc.l a ;No more Images

Here's a quick overview of the Image structure:

Abacus 7. Working with Intuition

image:
dc.w
dc.w
dc.w
dc.l
dc.b
dc.b
dc.l

0,0
32,13
1
imgdata
2

1

o

;x- and Y-position
;Width and height of the Image
;One bit plane: 2A1=2 colors
;Pointer to image data
;Drawing red: plane 1
;Background:white
;No more'lImages

Now let's produce the Image data. Each Image row uses a word, long
word, or several of these to represent the pattern. The set points of the
Image correspond to the set bits. This is repeated as often as the height of
the Image requires. The data on each line must begin on a word border, on
an even address.

For the example, it's easy to decide on the data, since you're going 32
points across-that corresponds to exactly one long word. It's easiest to
program the Image using the binary representation of the data.

Let's use, as an example, an image that repressents a switch in "OFF"
mode. This form is chosen for a good reason, so you should type it in. In
the chapter on gadgets that's coming up, we'll show you how to tum the
switch on. Here is the example data for the switch Image:

imgdata:
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l

;oata for switch in "OFF" mode
%00000000000000000000000000000000
%00000000000000000000111000000000
%00011101110111000001111100000000
%00010101000100000001111100000000
%00010101100110000001111000000000
%00011101000100000011100000000000
%00000000000000000111000000000000
%00000000000000001110000000000000
%00000000000111111111100000000000
%00000000001111111111110000000000
%00000000001111111111110000000000
%00000000000110000001100000000000
%00000000000000000000000000000000

Once you've typed this data, you can experiment with displaying it on the
screen. Enter the following lines before the "loop" label:

move.l image,a1
move #30,dO
move #50,d1
bsr draw

;Pointer to Image structure
;x-position in window
;Y-position
;Draw image

How do you like the Image on the screen? You'll run into this switch
again when we talk about putting the switch in the "ON" state when dis­
cussing gadgets. You need to look at other methods of drawing in the
window first, though.

201

7. Working with Intuition Amiga Machine Language

7 .8 Borders

202

A border is a collection of lines that are connected. They can be of any
length or at any angle. Intuition lets you draw borders to do things like
put frames around windows and screens. They are used to put borders
around pictures or text, especially for use with string gadgets. We'll talk
about that later, though.

It's easy to draw borders. Just use the Intuition function DrawBorder (off­
set -108) which needs four parameters:

In AO The RastPort address of the output medium the lines should be
drawn in. Use your window.

In Al The address of the border structure. We'll look at the form of this
structure shortly.

In DO The relative X-coordinate which is used with the X- and Y­
coordinate list to calculate the actual line coordinates.

In D 1 The relative Y -coordinates. Relative, here too, means that this is
relative to the upper left comer of the screen.

Let's write a short routine that is called with three parameters. The struc­
ture address is in Al and the X- and Y -coordinates are in DO and Dl
respectively when the routine is called. The border is drawn in the window
whose structure address is in "windowhd".

DrawBorder = -108

borderdraw:
move.l intbase, a6

;* Draw several lines
;Intuition base adcdress in A6

move.l windowhd, aO ;Pointer to window structure
move.l 50 (aO), aD ;Now RastPort address is in AD
jsr DrawBorder (a6) ;Draw lines
rts

Now let's look at the border structure. The list needs the eight following
parameters:

First, you need two words for the vertical and horizontal distance from the
coordinates given in the function call. To avoid losing sight of some of
the many distance entries, put zeros here:

Abacus

border:
dc.w
dc.w

o
o

7. Working with Intuition

;Horizontal distance
;Vertical distance

Next come two bytes that determine the color. Use a red frame:

dc.b
dc.b

3
o

;Red frame
;Background (unused)

As you can see, the background color isn't used. You have two modes to
choose between for drawing the lines. The following mode determines the
mode that is used. If it is zero, each line is drawn in the color chosen, no
matter what was before. This is the JAM! mode. The other mode is the
XOR mode which ignores both color entries. In this mode, all the points
that lie under the line have their color value inverted. As a result, a white
point becomes black, and a blue one becomes red. That is mode two.
Let's use the JAM! mode for the example:

dc.b o ;Mode:JAMl (2=XOR)

The next entry specifies how many coordinate pairs there are in the list.
Since this word must be on an even address, you need to use the "align"
pseud-op first. Then enter the number of pairs. Remember that you need
three points to draw two lines: beginning, corner and end point. To draw a
rectangular frame, you need five pairs:

dc.b 5 ;5 X,Y pairs used together

The next item is a pointer to the coordinate table that contains a list of
points to be connected:

dc.l coord ;Pointer to coordinates table

The border structure's final entry is a long word that can point to another
border structure. If you don't have any more structures to be pointed to,
just enter a zero here. The pointer is useful for connecting two indepen­
dent border structures-for example, to produce a two colored frame that
really stands out. You don't need this pointer in the example, though:

dc.l o ;No more st ruct ures

That's the border structure. Now let's look at the coordinate list. For the
example, it consists of five pairs of numbers which represent a rectangle.
I recommend entering these values, because you'll use them in example
programs further down the line.

203

7. Working with Intuition Amlga Machine Language

204

coord:
dc.w
dc.w
dc.w
dc.w
dc.w

-2,-2
80,-2
80,9
-2,9
-2,-2

;Coordinates for rectangular frame

Here's a quick overview of the border structure:

border:
dc.w 0 ;Horizontal distance
dc.w 0 ;Vertical distance
dc.b 3 ;Red frame
dc.b 0 ;Background (unused)
dc.b 0 ;Mode: JAMl (2=XOR)
dc.b 5 ;5 X,Y pairs used together
dc.l coord ;Pointer to coordinates table
dc.l 0 ;No more structures

coord: ;Coordinates for rectangular frame
dc.w -2,-2
dc.w 80,-2
dc.w 80, 9
dc.w -2,9
dc.w -2,-2

Once you've typed this in, you can try the whole thing out Type the fol­
lowing lines before the "loop" label in the program:

lea
move
move
bsr

border.al
#20,dO
#80,dl
borderdraw

;Address of the border structure
;X base position
;Y base position
;Draw frame

As you can see, using enough X- and Y -coordinates, you can draw the
Eiffel tower. That's enough about simple drawings. You want to put
some life into your drawings and text. Let's manipulate them with the
mouse!

Abacus 7. Working with Intuition

7 . 9 Gadgets

7.9.1

We already talked a bit about gadgets when you looked at screen construc­
tion. Looking at system gadgets like the window close symbol, you can
activate by clicking and causes a program function to be executed.

You can make your own gadgets as well. Intuition allows you a lot of
interesting possiblities.

There are four types of gadgets:

Boolean gadgets are used in Yes/No situations. You can click
and activate it (Yes) or deactivate it (No).
String gadgets are used to accept input of text of a specified
length.
Integer gadgets are a special sort of string gadgets which accept
the input of a decimal number. Intuition converts the value into
a long word and sends it to the program.
Proportional gadgets let you choose an analog value with the
mouse. You can move these around with the mouse.

Boolean gadgets

Let's start with the simplest type, the boolean gadget An example of this
sort of gadget is the close symbol of the window. The only status it
differentiates between are clicked and not clicked. Let's develop a gadget of
this type step by step. The flags and other parameters are similar for the
other gadgets.

Each gadget needs a structure containing fifteen entries. There is a pointer
to this structure in window, screen or requester that the gadget is to appear
in. There's always a long word available for this purpose. Up to this
point, you've just put a zero there. If there is an address of a gadget struc­
ture there, the gadget or gadgets are displayed when the window is opened.

A gadget structure has the following entries:

The first long word is a pointer to the next gadget to be installed. The
gadgets are displayed in a row, like pearls on a string. This pointer is the

205

7. Working with Intuition Amiga Machine Language

206

fIrst gadget in this linked list of gadgets. If you just want one gadget in
your window, put a zero here:

gadget1:
dc.l o ;No more gadgets

The next two words determine the position of the gadget in the window.
There are several ways to determine the position. Use flags to access the
various possibilities. Let's start with a gadget that stays in one spot:

dc.w
dc.w

40
50

;x- and
;Y-position of the gadget

The next two words determine the size of the gadget's Hit box. This box
isn't the visible size of the gadget (that depends on the Image data). It is
the size of the rectangle that Intuition should watch. If the mouse pointer
is moved into this box and the left button is pressed, the gadget is acti­
vated. Clicking on parts of the gadget that are outside this box have no
effect!

dc.w
dc.w

32
13

;Width and
;Height of the Hit box

Next, comes the word whose bits determines the properties of the gadget.
Bits 0 and 1 determine what should happen when this object's hit box is
clicked on. The meanings of the various values of these bits go as
follows:

Bit 0
o
o
1
1

1
o
1
o
1

Value
o
1
2
3

Name
GADGHCOMP
GADGHBOX
GADGHlMAGE
GADGHNONE

Meaning
The gadget inverted
The gadget framed
Another Image appears
No reaction

Bit 2 determines whether the gadget should consist of a drawing or a bor­
der. If it is set (Value +4), it is treated as an image; otherwise it's treated
like a border.

The next bit determines if the gadget should appear in the upper or lower
border of the frame. If it is set (Value +8), the position is relative to the
lower border; otherwise it is relative to the upper border. The next bit has
the same meaning for the horizontal position. If set (Value +$10), it is a
relative positioning. Otherwise, it is an absolute positioning.

Notice that when you defIne a gadget to be relative, you must have a neg­
ative value in the position input in the fIrst word of the structure. Since
the desired positon isn't under, but is over this position!

Abacus 7. Working with Intuition

In this way, you can choose either absolute or relative positioning of the
gadget. An example of a gadget that is positioned absolutely is the sys­
tem gadget, close window. An example of a relative gadget is the symbol
for changing the size.

The width and height of the gadget's hit box can also be relative to the
window size. Specify this by using bit 5 for width (Value +$20) and bit 6
for the height (Value +$40). A set bit means a relative size.

Bit 7 (Value +$80) makes the object active as soon as the window is
opened.

Bit 8 (Value +$100) detennines whether the gadget can be used or not. If
this bit is set, the gadget can't be activated.

For the example, you'll use absolute positioning and size, the inverted
appearance for the activated gadget, and the representation of the object as
an image. That means you must use the value four:

dc.w 4 ;Flags: Image,invert

Next comes a word whose bits are used as flags. This flag is called the
Activation Flag. It detennines the functions of the gadget. The bits, their
values and meanings follow:

Bit Value Name
o 1 RELVERIFY

1 2 GADGIMMEDIATE

2 4 ENDGADGET

3 8 FOLLOWMOUSE

4 $10 RIGHTBORDER

5 $20 LEFTBORDER
6 $40 TOP BORDER
7 $80 BOTTOMBORDER

Meaning
Causes the gadget to be activated only
when the left mouse key is let loose
over the gadget
Let's the gadget be active as soon as
there is a click.
Let's you choose to end this choice and
have it disappear if this is a Requester
gadget
Let's the gadget know the mouse posi­
tion at regular intervals from the time it
is selected until the time it is deselected.
You can use this to move the gadget
with the mouse when you want to
change the gadget position.
This makes sure that when borders are
used that the page is adjusted to the size
of the gadget so that it fits in the
border.

207

7. Working with Intuition Amiga Machine Language

208

8

9

10
11

12

$100 TOGGLESELECT

$200 STRINGCENTER

$400 STRINGRIGHT
$800 LONGINT

$1000 ALTKEYMAP

Allows the object's state to change
every time it is clicked. If activated, it
becomes deactivated and vice versa.
For a string gadget, these two bits deter­
mine whether the string should appear
centered or right justified. If neither is
set, the string is output left justified.

Turns a string gadget into an Integer
gadget (explanation later).
Causes another key board placement to
be in effect for string gadget input

That's it for the activation flags. Let's choose the TOGGLESELECT and
GAOOETIMMEDIATE flags for the example:

dc.w $102 ;Activation

The next word of the gadget structure determines the gadget type. Here is
the meaning of the individual bits:

Bit Value Name Meaning {re£ort what circumstancesl
0 1 BOOLGADGET This is a boolean gadget.
1 2 GADGETOO2
2 4 STRGADGET String order Integer gadget

0+1 3 PROPGADGET Proportional gadget

System gadgets:
4 $10 SIZING Size changing gadget
5 $20 WDRAGGING Moving gadget for window

4+5 $30 SDRAGGING Same for screen
6 $40 WUPFRONT Gadget to move window forward

6+4 $50 SUP FRONT Gadget to move screen forward
6+5 $60 WDOWNBACK Move window back
6+5+4 $70 SDOWNBACK Move screen back
7 $80 CLOSE Window close gadget

Type defmitions:
12 $1000 REQGADGET Requester gadget
13 $2000 GZZGADGET Border gadget in GIMMEZERO-

ZERO window
14 $4000 SCRGADGET Screen gadget when set
15 $8000 SYSGADGET System gadget when set

You want to use a simple boolean gadget for your example, so enter:

dc.w 1 ;Gadget type: boolean

Next comes a pointer to the gadget structure. The first pointer contains
the address of the Image or border structure which should be used to repre­
sent the gadget. If no representation is needed, put a zero here. You want

Abacus 7. Working with Intuition

to represent the gadget as an Image, so put a pointer to the Image struc­
ture that you produced in the chapter about Images:

dc.l image ;Gadget Image

The next pointer is only used if the GADGHIMAGE flag in the flag word
of the structure is set. This is a pointer to another structure that should be
put on the screen when the object is activated. If a border structure is used
for the gadget representation, this must be a border structure as well. You
won't use a second Image, so put a zero here:

dc.l o ;No new gadget displayed

The next pointer is to the text structure that should be output by the gad­
get. If no text is needed, just put a zero here. You want to use some text,
however:

dc.l ggtext ;Gadget text

Next comes a long word that determines which gadgets are deactivated
when this is activated. This function still doesn't work right so put a zero
here:

dc.l o ;No exclude

You'll set the next pointer to zero as well, because it is only used for
String and Proportional gadgets. For these gadgets, this is a special struc­
ture to describe the characteristics of the gadget. It's called Speciallnfo.

dc.l o ;No SpecialInfo

The next word contains the Gadget Identification (ID) number:

dc.w 1 ;Gadget 10

Finally there is a long word that doesn't have any function, so put a zero
here:

dc.l o ;User data (ignored)

That's it. Here's a quick overview of the gadget structure:

gadget: :
dc.l
dc.w
dc.w
dc.w
dc.w

dc.w
dc.w

o
40
50
32
13
4
$102

;No more gadgets
;X- and
;Y-position of the gadget
;Width and
;Height of the Hit box
;Flags: Image, invert
;Activation flags

209

7. Working with Intuition Amiga Machine Language

210

dc.w 1 ;Gadget type: boolean
dc.l image ;Gadget Image
dc.l 0 ;No new gadget displayed
dc.l ggtext ;Gadget text
dc.l 0 ;No exclude
dc.l 0 ;No Special Info
dc.w 1 ;Gadget IO
dc.l 0 ;User data (ignored)

You've already prepared a structure that you can use for the Image. Now
you need the text that appears under the gadget.

Since this gadget looks like a switch, label it "Switch". The text structure
looks like this:

ggtext:
dc.b 1,0
dc.b 1

align

swtext:

dc.w -8,14
dc.10
dc.l swtext
dc.10

dc.b "Switch",O
align

;Color s
;Mode

;x- and Y-position
;Standard font
;Pointer to text
;No more text

Once you've typed this in, save it, assemble it and start it. You can click
the switch and cause it to be inverted. Click it again, and it appears
normal.

Now you can experiment with the structure. If you change the flag from
four to five, you can cause the gadget to be framed when it is activated.
Set the RELVERIFY bit (Bit 0: +1) in the Activation Flag word. Then
you can move the mouse pointer onto the object and press the button. It
is activated. Keep the mouse button pressed down and move the mouse.
Once you leave the Hit box, the activation disappears. This way, you can
avoid accidently activating a gadget.

Now you want to display the switch in an on state. This is easy. All you
need to do is produce another Image structure, one for the on state. You
put this pointer in the long word right after the pointer to the normal
Image structure. You change the flag word to six which causes a second
Image to be displayed when the gadget is activated.

Here is the Image structure for the switch in the on state.

Abacus

7.9.2

7. Working with Intuition

image2:
dc.w 0,0
dc.w 32,13
dc.w 1
dc.l imgdata2
dc.b 2,1
dc.10

;No offset
;32x13 pixels
;Mode 1
;Pointer to the data
;Same colors as before
;Nothing else

imgdata2: ;Data for switch in the ON state
dc.l %00000000000000000000000000000000
dc.l %00000000011100000000000000000000
dc.l %00000000111110000011101001000000
dc.l %00000000111110000010101101000000
dc.l %00000000011110000010101011000000
dc.l %00000000000111000011101001000000
dc.l %00000000000011100000000000000000
dc.l %00000000000001110000000000000000
dc.l %00000000000111111111100000000000
dc.l %00000000001111111111110000000000
dc.l %00000000001111111111110000000000
dc.l %00000000000110000001100000000000
dc.l %00000000000000000000000000000000

Now the state of the object can be determined by looking at the picture. If
the gadget is activated, the switch is on. If not, the switch is off.

That's it for Boolean gadgets. You can learn about the things you didn't
touch with some experimentation. You want to get to the string gadgets
that also do some interesting things.

String gadgets

Let's pretend you want a program to load data from the disk. To get the
user to enter the filename, you need to output text telling the user to enter
the name. Then you need to call an input routine to evaluate the keyboard
input.

It's easier and more elegant to use a String gadget. This function allows
for easy input and/or editing of short text You have the option of having
the text framed. The Undo function can be used by pressing the right
<Amiga> key and a "Q", and the old contents of the gadget, the old text
are restored.

You can also vary the size of the text and the input field. If the text is
longer than the input field is wide, the text is moved back and forth
through the visible area when you move the cursor keys or the normal
input to the border.

211

7. Working with Intuition Amiga Machine Language

212

You can also restrict input to just digits. This makes it possible to accept
numeric input. Intuition even converts the digit string into a binary
number. This saves the machine language programmer some work. A
specialized StrI11g gadget of this sort is called an Integer gadget

The structure is similar to the Boolean gadget's structure. There are only
two major differences:

The type word of the structure must be a four to declare that this is a
String gadget (STRGADGET).

The pointer to the Speciallnfo structure is needed. Put a pointer to the
Stringlnfo structure that you are going to design later here.

The width and height entries in the gadget structure have a different mean­
ing than they had previously. They do declare the area in which you can
bring the mouse pointer to activate the String gadget However, it is also
used for the representation of text. These values determine the size of the
box in which the text is output. You should surround the box with a
border using the Border function, so that the user can see where it is.

If the text is longer than the box, only a portion of it is seen on the
screen. You can move through the area by entering text or using the
left/right cursor keys to move through the box. The characters that are
entered are inserted at the cursor position, so the rest of the text is shifted
by one character when you are on the right edge of the input area. The
following functions can be used for editing this text:

Cursor key left/right
Moves the cursor over the text that's already on hand. Moves the
text through the Container.

Cursor keys with <Shift>
Puts the cursor on the beginning or the end of the text

 Deletes the character under the cursor.

<Backspace>
Deletes the character to the left of the cursor.

<Return>
Ends text input

<Arniga> right + "Q"
This is the Undo function. It replaces the text with the original
contents.

Abacus 7. Working with Intuition

The StringInfo structure only has a few entries:

First there's a pointer to the memory area that is used to store the text
that is input. The memory buffer must be big enough to handle all the
text entered.

strinfo:
dc.l strpuffer ;Pointer to text buffer

Next comes a pointer to the Undo buffer. This pointer and this buffer are
only needed if you want the Undo function. If you do, you must have a
buffer that is at least as big as the text buffer. Every time the string
gadget function is called, the text buffer's contents are copied into this
buffer. To get the old contents back, just press the right <Amiga> key
and the .'Q" key. The contents of the Undo buffer are copied back to the
text buffer. If you use several String gadgets in a program, you can use
the same Undo buffer for all of them, since only one String gadget is used
at a time.

dc.l undo ;Pointer to Undo buffer

The following word contains the cursor position in the text. You should
set this word to zero, so that the user can see the beginning of the text
when the String gadget appears.

dc.w o ;Cursor position

The next word contains the maximum number of characters that can be
input. If you type one more than this number of characters, the screen
blinks, to show that you can't enter a longer input string. The number of
characters and the reserved space for the input field don't have to agree,
since text can be scrolled by typing.

dc.w 10 ;Maximum # of characters

The following word tells at which character of the text in the buffer, the
output to the box should begin. You should put a zero here, so that the
user can see the beginning of the text.

dc.w o ;Output text from this character

The next five words are used by Intuition, so you don't have to initialize
them. Just put zeros here. The wods contain the following information:

dc.w 0 ;Character position in Undo buffer
dc.w 0 ;Number of charsin text buffer
dc.w 0 ;Number of chars visible in box
dc.w 0 ;Horizontal box offset

213

7. Working with Intuition Amlga Machine Language

214

dc.w o ;Vertical box offset

The next two long words are initialized by Intuition as well:

dc.l
dc.l

o
o

;Pointer to RastPort
;Long word with value of the input
;(for Integer gadgets)

The final entry is a pointer to the keyboard table that is used if the
AL TKEYMAP flag of the gadget is set

dc.l o ;Standard keyboard table

Here's a quick overview of the StringInfo structure:

strinfo:
dc.l
dc.l
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.w
dc.l
dc.l

dc.l

strpuffer ;Pointer to text buffer
undo ;Pointer to Undo buffer
o ;Cursor position
10 ;Maximum if of characters
o ;Output text from this character
o ;Character position in Undo buffer
o ;Number of chars in text buffer
o ;Number of chars visible in box
o ;Horizontal box offset
o ;Vertical box offset
o ;Pointer to RastPort
o ;Long word with val ue of the input

;(for Integer gadgets)
o ;Standard keyboard table

Here are the text and Undo buffers:

strpuffer:
dc.b

undo:
"Hello! ",0,0,0

dc.l 0,0,0,0
align

Once you've entered these lines, you can either alter the old gadget
structure or build a new one. We'd recommend building another gadget
structure so that you can have the switch and use it later. Change the nrst
pointer in the old structure from zero to "gadgetl" and insert this new
structure. Here is an example structure for the String gadget. It has the
following entries:

gadget1:
dc.l
dc.w
dc.w
dc.w
dc.w
dc.w

o
20,80
80,10
o
2
4

;* Structure for String gadget
;No more gadgets
;Position
;Width and height of box
;Flags: normal
;Acti vat ion ($802 for long int)
~ype:Stringgadget

Abacus 7. Working with Intuition

dc.l border ;Pointer to border
dc.l ° ;No drawing selected
dc.l ° ;No text
dc.l ° ;No exclude
dc.l strinfo ;Pointer to StringInfo structure
dc.w 2 ;Gadget ID
dc.l ° ;No user data

border: ;* Border for box frame
dc.w 0,0 ;No offset
dc.b 3,3 ;Red color
dc.b ° ;Mode: JAMl
dc.b 5 ;5 X,Y pairs
dc.l coord ;Pointer to coordinates table
dc.l ° ;No more structures

coord: ;* Coordinates for frame
dc.w -2,-2 ;Start in upper left corner
dc.w 80,-2 ;Upper right
dc.w 80,9 ;Lower right
dc.w -2,9 ;Lower left
dc.w -2,-2 ;Back to beginning

This data causes a red rectangle, the Border, to appear around the "Hello !"
text. You can change the text by clicking in the field and editing once the
cursor appears. If you type something wrong, you can use the Undo
function (The right <Amiga> key and the Q key), to get "Hello !" back.

Once you've done some typing and deactivated the gadget by pressing
<Return> or by clicking outside the field (Cursor disappears), you can
terminate the program.

Change the Activation flag to $802 and the "strbuffer" to "dc.l 0,0,0,0",
assemble, and then start the program. You can type in the string gadget
once it has been activated, but you can only enter digits. The screen
blinks if you enter letters.

Enter a number, and then end the program after deactivating the gadget. If
you look at the Stringlnfo structure you can look at the value of the
number you input (in hex) in the eighth long word.

After looking at boolean, text and numeric input to gadgets, let's look at
Proportional gadgets which allow the user to enter analog values by mov­
ing a symbol.

215

7. Working with Intuition Amiga Machine Language

7.9.3

216

Proportional gadgets

You've seen the advantages of slider devices over knobs that you tum,
maybe on a Hi Fi, maybe on a toaster, but certainly someplace. It's easier
to tell the state the item is in with a slider, especially if several such
devices are next to each other (for example graphic equalizers). You can
represent sliders on the Amiga's screen and work with them with the
mouse. This offers a nice way to represent information graphically in
your programs.

You can do this with gadgets. Using Proportional gadgets, you can put a
symbol in a frame and move it horizontally and/or vertically. The size of
the frame and the slider can be of variable size, so that the frame size is
relative to the screen size so when the window changes size, it will also.
The slider can be set up so that its size in the frame grows or shrinks.

These options are best seen via example and experimentation. (The
possibilities mentioned do not form a complete list by any stretch of the
imagination.) You want to set up a simple Proportional gadget that can
be moved horizontally.

You need a gadget structure that has the same form as the others. To
show the differences, here's a complete example structure for your gadget.
You can connect this gadget to the other one, by changing the ftrst long
word in the last structure to "dc.l gadget2".

gadget2:

dc.l 0
dc.w 150,30
dc.w 100,10
dc.w 4
dc.w 2
dc.w 3
dc.l mover
dc.l 0
dc.l 0
dc.l 0
dc.l propinfo
dc.w 3
dc.l 0

;* Structure for Proportional
gadget
;No more gadgets
;Position
;Width and height of frame
;Flags:GADGIMAGE
;Activation:GADGIMMEDIATE
;Type: Proportional gadget
;Pointer to slider data
;No select structure
;No text
;No exclude
;Pointer to Prop1nfo structure
;Gadget 10
;No user data

You see two special features. Use an Image structure for the mover and
put a pointer to another structure in the spot for the SpecialInfo pointer.

First, let's look at the "mover" structure, the slider's Image structure.
Here's an example of this structure:

Abacus 7. Working with Intuition

mover: ;* Structure for slider image
dc.w 0,0 ;No offset
dc.w 16,7 ;16x7 pixels big
dc.w 1 ;One bi t plane
dc.l moverdata ;Pointer to image data
dc.b 1,0 ;Color: white
dc.l 0 ;Don' t continue

moverdata: ;* Image data for mover
dc.w %0111111111111110
dc.w %0101111111111010
dc.w %0101011111101010
dc.w %0101010110101010
dc.w %0101011111101010
dc.w %0101111111111010
dc.w %0111111111111110

Up till now, there wasn't anything new. Now let's look at the Proplnfo
structure that describes the properties of the Proportional gadget.

The structure starts with a flag word that contains the following flag bits:

Bit Value Name Meaning
0 1 AUTOKNOB Mover is set up automatically
1 2 FREEHORIZ Allows horizontal movement
2 4 FREEVERT Allows vertical movement
3 8 PROPBORDERLESS Turns off automatic framing
8 $100 KNOBHIT Set when the mover is touched

You can set the ftrst four bits to get the representation that you want. Bit
8 is set by Intuition when the mover is clicked with the mouse pointer.

Bit 0, AUTOKNOB, allows for the simplest sort of Proportional gadget.
If this bit is set, no move data are used for the mover Image. Instead, a
white mover is generated that is adjusted to the size of the box and the
value to be represented. When you use this slider to represent the
displayed lines in a long text of a text program, the displayed lines are a
percentage of the total text. The relationship between the total number of
lines and the lines shown is represented by an AUTOKNOB as the
relationship between the frame and the slider. The bigger the percentage,
the bigger the slider is. You don't want to work with this though, even
though it is simple and interesting, because a simple white button isn't
particularly attractive. If you experiment with it, make sure that the
pointer to the Image data points to a four word long buffer that Intuition
can use to store values. The buffer is of the following form:

buffer:
dc.w 0
dc.w 0
dc.w 0
dc.w 0

;X-position of the slider in the box
;Y-position in the box
;Width of slider
;Height of slider

217

7. Working with Intuition Amlga Machine Language

218

Let's look at the PropInfo structure. Since you're not using AUTOKNOB
and wish to allow horizontal movement only, put two in as a flag:

propinfo:
dc.w 2 ;Flags: FREEHORIZ

In the next two words of the structure, the horizontal (HorizPot) and
vertical (VertPot) position of sliders are stored. A value of zero means left
or upper, while the value $FFFF means right or lower. The value that
results from movement is in this range. You set these values to zero at
the start of the program. After moving the mouse, there is different values
here.

dc.w 0,0 ;x- and Y-position of slider

Next come two words which determine the size of the AUTOKNOB or
the step size of the slider (this determines how far the slider moves when
you click in the box next to the slider). These words are called HorizBody
(horizontal movement) and VertBody (vertical movement).

dc.w $ffff/16 ;Horizontal step size: 1/16
dc.w 0 ;No vertical movement

;The next six words are initialized by Intuition.
dc.w 0 ;Box width
dc.w 0 ;Box height
dc.w 0 ;Absolute step size horizontal
dc.w 0 ;And vertical
dc.w 0 ;Left border of box
dc.w 0 ;Upper border of box

That's it. Here's a quick overview of the Proplnfo structure:

propinfo:
dc.w 2

dc.w 0,0
dc.w $ffff/16
dc.w 0
dc.w 0
dc.w 0
dc.w 0
dc.w 0
dc.w 0
dc.w 0

;Flags:FREEHORIZ
;X- and Y-position of slider
;Horizontal step size: 1/16
;No vertical movement
;Box width
;Box height
;Absolute step size horizontal
;and vertical
;Left border of box
;Upper border of box

Once you've typed this in, you can start the program and try it out.

You can also try vertical movement by setting the flag word equal to six,
the vertical step size to $FFFF/lO, and the height of the gadget to 80, for
example. To try out the AUTOKNOBs, change the flag value to seven.

Abacus

7.1 0

7. Working with Intuition

Example program

Here is a complete example program using what you have learned in this
chapter:

; 7 Intuition.asm
;** Demo-Program for working with Intuition **

movescreen -162
open screen -198
closescreen -66
openwindow -204
closewindow -72
autorequest -348
SetMenuStrip -264
ClearMenuStrip -54
PrintIText -216
DrawImage -114
DrawBorder -108
DisplayBeep -96
close library -414
openlib -408
execbase 4
GetMsg -372

joy2 $dffOc
fire $bfe001

;! ! ! when> SOOKB !!!

;org $40000
;load $40000
; or use AssemPro to place in CHIP RAM
"' 1 1 I I! I I I I I "1' t, I" "

run:
bsr openint
bsr scropen
bsr windopen
bsr setmenu
bsr print

lea border,a1
move #22,dO
move #30,d1
bsr borderdraw

bsr draw

bsr request

219

7. Working with Intuition

loop:
move.l
move.l
move.l
jsr
tst.l
beq
move.l
move.l
move.l
move.l
lsr
lsr
clr.l
roxr
roxl
and.l
cmp
beq
lsr
cmp
bne
move.l
move.l
jsr

no1:
cmp
bne

ende:
bsr
bsr
bsr
bsr
rts

openint:
move.l
lea
jsr
move.l
rts

closeint:
move.l
move.l
jsr
rts

scropen:
move.l
lea
jsr
move.l
rts

220

execbase,a 6
windowhd,aO
B6(aO),aO
GetMsg(a6)
dO
loop
dO,aO
$16 (aO) ,msg
msg,d6
d6,d7
4tB,d7
4t3,d7
dS
#1,d6
#1,dS
4t$7f,d6
4t$7f,d6
loop
H,d6
#1,d6
no1
intbase,a6
screenhd,aO
DisplayBeep (a6)

4tO,d6
loop

clearmenu
windclose
scrclose
closeint

execbase,a6
intname,a1
openlib(a6)
dO,intbase

execbase,a6
intbase,a1
closelibrary(a6)

intbase,a6
screen defs,aO -
open screen (a6)
dO,screenhd

Amlga Machine Language

;User-Port

;no event

;Event: LO=Item, HI=Event
;to test

;Sub menu point in D7

;Menu number in DS

;no menu point?
;no: continue
;Menu point in D6
;Point 2 ?

Abacus

scrclose:
move.l
move.l
jsr
rts

scrmove:
move.l
move.l
jsr
rts

windopen:
move.l
lea
jsr
move.l
rts

windclose:
move.l
move.l
jsr
rts

request:
move.l
lea
lea
lea
move.l
move.l
move.l
move.l
move.l
jsr
rts

setmenu:
lea
lea
move

menuloop:
clr.l
move.l
tst.l
beq
clr.l
move
add.l
move.l
move.l
move.l
lea
move.l

intbase,a6
screenhd,aO
closescreen (a6)

intbase,a6
screenhd,aO
movescreen (a6)

intbase,a6
windowdef,aO
openwindow (a6)
dO,windowhd

intbase,a6
windowhd,aO
closewindow (a6)

windowhd,aO
btext,al
ltext,a2
rtext,a3
#O,dO
#O,dl
#l80,d2
#80,d3
intbase,a6
autorequest (a6)

mentab,aO
menu,al
#IO,dl

d2
al,a2
(aD)
setmenul
(al) +
dl,(al)+
#70,dl
#50,(al) +
#$aOOOl, (al) +
(aO) +,(al) +
12 (al) ,a3
a3,(al)+

7. Working with Intuition

;Pointer to text pointer in AO
;Pointer to Menu field in Al
;Menu position=lO

;Menu point-Y =0
;Save pointer

;End

;Menu title

;Menu point

221

7. Working with Intuition

222

elLl
elr.l

itemloop:
tst.l
beq
lea
move.l
move.l
add
move.l
move
clr.l
lea
move.l
elr.l
elr.l
elr.l

move
clr
move.l
clr.l
move.l
clr.l

bra

menuend:
clr.l
tst.l
tst.l
beq
move.l
bra

setmenul:
move.l
move.l
lea
jsr
rts

clearmenu:
move.l
move.l
jsr
rts

print:
move.l
move.l
move.l
lea
move.l
move.l

(al) +
(al) +

(aO)
menuend
54(al),a3
a3,(al)+
d2,(al)+
411 0,d2
#$5aOOOa, (al) +
#$52,(al) +
(al) +
16(al),a3
a3,(al)+
(al)+
(al) +
(al)+

#$l,(al)+
(al)+
#$50003, (al) +
(al) +
(aO)+,(al)+
(al) +

itemloop

-54 (al)
(aO) +
(aO)
setmenul
al,(a2)
menu loop

intbase,a6
windowhd,aO
menu,al
SetMenuStrip (a6)

intbase,a6
windowhd,aO

Amlga Machine Language

;last one?
;yes

;Pointer to next Point
;X/y

;width/height

;Text structor-pointer

;Text-Structor set

;Text-pointer

;next Point ...

;still in Menu?
;no: ready
;Pointer to next menu
;and continue

ClearMenuStrip(a6)

intbase,a6
windowhd,aO
50(aO),aO
ggtext,al
#30,dO ;X
4I16,dl ;Y

Abacus 7. Working with Intuition

jsr PrintIText (a6)
rts

draw:
move.l intbase,a6
move.l windowhd,aO
move.l 50(aO),aO
lea image,al
move.l 1t200,dO
move.l HOO,dl
jsr Drawlmage (a6)
rts

borderdraw:
move.l intbase,a6
move.l windowhd,aO
move.l 50(aO),aO
jsr DrawBorder (a6)
rts

screen defs:
dc.w 0,0
dc.w 640,200
dc.w 4
dc.b 0
dc.b 1
dc.w $800
dc.w 15
dc.l 0
dc.l titel
dc.l 0
dc.l 0

windowdef:
dc.w 10,20
dc.w 300,150
dc.b 0,1
dc.l $300
dc.l $100f
dc.l gadget
dc.l 0
dc.l windname

screenhd: dc.l 0
dc.l 0
dc.w 200,40,600,200
dc.w $f

btext:
dc.b 3,3
dc.b 0
align dc.w 10,10
dc.l 0
dc.l body txt
dc.l 0

body txt: dc.b "Requester-Text" ,0

223

7. Working with Intuition Amiga Machine Language

align
Itext:

dc.b 3,1
dc.b 0
align dc.w 5,3
dc.l 0
dc.l lefttext
dc.l 0

lefttext: dc.b "left" ,0
align

rtext:
dc.b 0,1
dc.b 0
align dc.w 5,3
dc.l 0
dc.l righttext
dc.l 0

righttext: dc.b "right", 0

224

align
titel: dc.b
windname: dc.b

align
intbase: dc.l
intname: dc.b

align
mentab:

menu1:
mpll:
mp12:
mp13:
mpH:
mp15:
mp16:
mp17:
mp18:
mp19:

menu2:
mp21:
mp22:
mp23:

menu3:
mp31:
mp32:

dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l
dc.l

dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b
dc.b

dc.b
dc.b
dc.b
dc.b

dc.b
dc.b
dc.b

flU ser Screen n ,0

"Window-Title",O
windowhd: dc.l 0
o
"int uition.libr ary",O
msg: dc.l 0

menu1
mp11,mp12,mp13,mp14,mp15,mp 16,mp 1 7 ,mp18,mp19,O
menu2
mp21,mp22,mp23,O
menu3
mp31,mp32,O
menu 4,mp41,O
o

"Menu 1",0
"Point 11",0
"Point 12",0
"Point 13",0
"Point 14",0
"Point 15",0
"Point 16",0
"Point 17",0
"Point 18",0
"Point 19",0

"Menu 2",0
"End! ",0
"Beep",O
"Point 23",0

IIMenu 3",0
"Point 31",0
"Point 32",0

Abacus

menu4: dc.b
mp4l: dc.b

align

"Menu 4 ",0
"Point 41",0

gadget:

border:

koord:

dc.l
dc.w
dc.w
dc.w

gadgetl
20,80,80,10

° $2
dc.w 4
dc.l border

dc.l °
dc.l °
dc.l °
dc.l strinfo
dc.w 2

dc.l °

dc.w
dc.b
dc.b

0,0
1,0,0
5

dc.l koord

dc.l °

7. Working with Intuition

;Activation, $802 for LongInt

;XY-Pair

dc.w -2,-2,80,-2,80,9,-2,9,-2,- 2

strinfo:
dc.l
dc.l
dc.w
dc.w
dc.w

strpuffer
undo

° 10

° dc.w 0,0,0,0,0
dc.l 0,0,0

strpuffer: dc.b "Hello !", 0, 0, °
undo: dc.l 0,0,0

align
gadgetl:

dc.l gadget2
dc.w 40,50,32,13
dc.w $6
dc.w $103
dc.w 1
dc.l image
dc.l image2
dc.l ggtext
dc.l ° dc.l ° dc.w 1
dc.l °

ggtext:
dc.b 1,0,1
align dc.w -8,14

dc.l °

;Cursor-Position
;max. Char

;more Gadget

;Flags: invert
;Activate
;Gadget-Type
;Gadget - Image
;Select-Gadget
;Gadget-Text
;no Exclude
;special Info
;10
;UserOata

225

7. Working with Intuition Amlga Machine Language

226

dc.l swtext
dc.l 0

swtext: dc.b "Switch",O
align

image:
dc.w 0,0
dc.w 32,13
dc.w 1
dc.l imgdata
dc.b 2,1
dc.l 0

image2:
dc.w 0,0
dc.w 32,13
dc.w 1
dc.l imgdata2
dc.b 2,1
dc.l 0

imgdata:
dc.10
dc.l %00000000011100000000000000000000
dc.l %00000000111110000011101001000000
dc.l %000000001111100000 1 01011 01000000
dc.l %00000000011110000010101011000000
dc.l %00000000000111000011101001000000
dc.l %00000000000011100000000000000000
dc.l %00000000000001110000000000000000
dc.1 %000000000001111111111 00000000000
dc.l %0000000000111111111111 0000000000
dc.l %00000000001111111111110000000000
dc.l %000000000001100000011 00000000000
dc.lO

imgdata2:
dc.l 0
dc.l %00000000000000000000111000000000
dc.l %00011101110111000001111100000000
dc.l %00010101000100000001111100000000
dc.l %00010101100110000001111000000000
dc.l %00011101000100000011100000000000
dc.l %00000000000000000111000000000000
dc.l %00000000000000001110000000000000
dc.l %00000000000111111111100000000000
dc.l %00000000001111111111110000000000
dc.l %00000000001111111111110000000000
dc.l %00000000000110000001100000000000
dc.l 0

gadget2:
dc.l
dc.w
dc.w
dc.w
dc.w
dc.l

o
150,30,100,50
5
2
3
mover

;Prop. Gadget
;border

Abacus

dc.l 0,0,0
dc.l specinfo
dc.w 3
dc.l ° specinfo:
dc.w 6
dc.w 0,0
dc.w $fff f/ 1 O,$ffff/ 5
dc.w 0,0,0,0,0,0

mover:
dc.w 0,0,16,7
dc.w 1
dc.l moverdata
dc.b 1,0
dc.l ° moverdata:
dc.w %0111111111111110
dc.w %0101111111111010
dc.w %0101011111101010
dc.w %0101010110101010
dc.w %0101011111101010
dc.w %0101111111111010
dc.w %0111111111111110

menu: blk.w 500

end

7. Working with Intuition

;Flags: free horiz

227

Chapter 8

Advanced
Programming

Abacus

8

8. Example Programs

Advanced Programming

You've learned a lot about machine language programming on the
Arniga. What you need yet are a few routines that can be used as pro­
gramming tools. We'll work on that right now. They'll be easy to use in
your own program. The sky's the limit now!

8 . 1 Supervisor Mode

As mentioned in the chapter on the MC68000 processor, there are two
operating modes: the User and the Supervisor mode. It is often necessary
to move between the two modes. However, this isn't a simple process.

The reason you want to do this, is that in User mode, you can't access the
Status registers. If you write to one of them, an Exception is executed
which crashes the program.

How can you get into Supervisor mode?

No problem. The operating system of the Amiga contains a function in
the EXEC library that lets you get into the Supervisor mode. It's called
SuperState and it doesn't need any parameters. You can easily call this
program by using the following lines:

ExecBase
SuperState

= 4
= -150

;EXEC base address
;Turn on function

move.l ExecBase,a6 ;EXEC base address in A6
jsr SuperState (a6) ;Turn on Supervisor mode
move.l dO,savesp ;Save return value

savesp: blk.l 1 ;Space for SP value

You get the value .. of the Stack Pointer (SP) back in the DO register.
You'll also find it in register A7, but this register is changed regularly.
The reason is that in Supervisor mode, the Amiga works with all the
Interrupts and with the SP, and there are lots of Interrupts for this com­
puter. We'll talk about Interrupts in a bit.

231

8. Example Programs Amlga Machine Language

232

After this call, you'll use the User stack instead of the Supervisor stack.
In this way, you can access the old User stack. You need to make sure
that the User stack is large enough since the Interrupts must have enough
room for their data on the stack.

You need to save the value returned in DO, because you'll need this value
later. You need to return to User mode sometime. There's a function for
this in the EXEC library as well. It is called the U serState function. It
needs one parameter, the SP value that comes back from the SuperState
function.

Since you've saved this value in the long word starting at "savesp", you
can write the following:

UserState = -156

move.l ExecBase,a6 ;EXEC base address in A6
move.l savesp,dO ;Put old SP in DO
jsr UserState (a6) ;Return to User mode

Now you are back in the User mode. The User Stack Pointer (USP) is the
same as before. You can write functions that need to be run from the
Supervisor mode as subroutines. First you call SuperState, save the
return value, execute the desired function, call UserState, and end with a
RTS command. If the USP was changed, the RTS command wouldn't
work right, and the computer would jump who know's where and perhaps
crash. Here it works though.

Now comes the question: how does the operating system get into Super­
visor mode? That's not too difficult; it goes like this:

The SuperState function attempts to access a Status Register. This causes
an Exception to occur and a routine is called whose address begins at the
long word starting at $20. It is the Exception Vector for Privilege Viola­
tion. The routine that it branches to is called in Supervisor mode. Then it
tests where this Exception came from. If the routine finds that the Excep­
tion comes from the SuperState routine whose address it knows, the
matter is settled. It just branches to the routine without turning off the
User mode. That's all there is to it

Abacus 8. Example Programs

8.2 Exception programming

The exceptions described in the processor chapter offer you a lot of oppor­
tunities to control the Arniga's functions. You can use them to specify
how errors should be handled and even list a crashed program.

Here is a list of vectors that are used to jump to the Exception routines:

Number
2
3
4
5
6
7
8
9

10
11

15

24
25-31
32-47

64-255

Address
$008
$OOC
$010
$014
$018
$OIC
$020
$024
$028
$02C
$030-$038
$03C
$040-$05F
$060
$064-$083
$080-$OBF
$OCO-$OFF
$100-$3FF

Use with
Bus Error
Address Error
lllegal command
Division by zero
CHKcommand
TRAPV command
Privilege Violation
Tra:e
Axxx command emulation
Fxxx command emulation
Reserved
Uninitialized Interrupt
Reserved
Unauthorized Interrupt
Level 1-7 Interrupt
TRAP commands
Reserved
User Interrupt vector

Let's look at the 1RAP commands as an example. They aren't used in the
Amiga operating system. A TRAP command and a number between zero
and fifteen are used to call one of 16 possible TRAP routines. If the com­
mand TRAP #0 is executed, the processor (in Supervisor mode) branches
to the routine whose address lies at $80 in memory. This routine must
end with a RTE (ReTum from Exception) command.

Some operating systems, for example, the ATARI ST's TOS operating
systems, are completely callable via these TRAPs. Parameters are put on
the stack, and then a TRAP command is executed. The advantage is that
you don't have to know any of the operating system addresses. In the
Arniga you must know the addresses (ExecBase = 4).

Let's write your own TRAP routine to demonstrate the use of the TRAP
command. You'll need three program sections:

233

8. Example Programs Amlga Machine Language

234

1. The initialization of the TRAP vector.
2. The TRAP routine itself. (It must end with RTE.)
3. A test routine that calls the TRAP command.

Initialization is very short:

in it:
move.l #trapO,$80
rts

;Set vector for TRAP #0

Now you need to write the trapO routine. Let's use the example from the
hardware chapter that produced a beep.

Let's write this routine using as little effort as possible. Change the RTS
to a RTE at the end, erase the line in which the loop counter DO was
loaded for the tone production, and change the loop so that it works with
long words. Now you can load the register with an arbitrary value and
have the TRAP #0 followed by a peep of arbitrary duration.

;* *
ctlw
cOthi
cOtlo
cOtl
cOper
cOvol
trapO:

loop:

still:

table:

Beep tone production after a TRAP #0 **
= $dff 0 96 ;DMA cont rol
= $dffOaO ;HI table address
= cOthi+2
= cOthi+4
= cOthi+6
= cOthi+8

move.l #t able,cOt hi
move #4,cOtl
move #300,cOper
move #40,cOvol
move #$8201,ctlw

subq.l n,dO
bne loop

move #l,ctlw
rte

;LO table address
;Table length
;Read in rate
;Volume
;* Produce a short peep
;Table beginning
;Table length
;Read in rate
;Volume
;Start DMA (sound)

;Counter-l
;Count down to zero

;Turn on tone
;Exception end
;Sound table

dc.b -40,-70,-40,0,40,70,40,0

You need to make sure that "table" is in Chip RAM ($OOOOO-$7FFFF),
otherwise the Sound Chip can't access the data!

After entering this, you can test it out using the following routine:

test:
move.l #$2ffff,dO
trap #0
rts

;Pass tone length in DO
;Carry out Exception: peep

Abacus 8. Example Programs

Now assemble both routines and start the initialization routine, init.
Nothing happens.

Start the second routine, test. A beep that lasts about one second is out­
put.

One thing you must keep in mind is that if you change the program and
reassemble it, the address of the trapO routine can change. Before you
execute the TRAP command, you must repeat the initialization, so that
the computer doesn't jump to the wrong location!

235

Appendices

Abacus Appendix

Overview of Library Functions

The following table gives you an overview of the available libraries and
their functions. Each sub list of functions is preceded by the name of the
library it is found in.

These functions are listed with their negative offset in hex and decimal.
Their name and their parameters are also specified. The parameter names
are in parenthesis behind the function name. The second set of parenthesis
includes a list of registers that correspond to the parameter names. If no
parameters are needed, we put 0 to let you know.

clist.library

-$OOlE
-$0024
-$002A
-$0030
-$0036
-$003C
-$0042
-$0048
-$004E
-$0054
-$005A
-$0060
-$0066
-$006C
-$0072
-$0078
-$007E
-$0084
-$008A
-$0090
-$0096
-$009C

-30
-36
-42
-48
-54
-60
-66
-72
-78
-84
-90
-96
-102
-108
-114
-120
-126
-132
-138
-144
-150
-156

InitCLPool (eLPool, size) (AO,DO)
AlloeCList (eLPool) (AI)
FreeCList (cList) (AO)
FlushCList (eList) (AO)
SizeCList (cList) (AO)
PutCLChar (eList,byte) (AO,DO)
GetCLChar (eList) (AO)
UnGetCLChar (eList,byte) (AO,DO)
UnPutCLChar (eList) (AO)
PutCLWord (cList,word) (AO,D 0)
GetCLWord (eList) (AO)
UnGetCLWord (cList,word) (AO,DO)
UnPutCLWord (cList) (AO)
PutCLBuf (eList,buffer,length) (AO,Al,Dl)
GetCLBuf (eList,buffer,maxLength) (AO,Al,Dl)
MarkCList (eList,offset) (AO,DO)
InerCLMark (eList) (AO)
PeekCLMark (cList) (AO)
SplitCList (cList) (AO)
CopyCList (eList) (AO)
SubCList (eList,index,length) (AO,DO,Dl)
ConeatCList (soureeCList,destCList) (AO,Al)

console.library

-$002A
-$0030

-42
-48

CDInputHandler (events,device) (AO,Al)
RawKeyConvert (events,buffer ,lengt h,keyMap)
(AO,Al,Dl,A2)

diskfont.library

-$OOlE -30 OpenDiskFont (textAttr) (AO)
-$0024 -36 AvailFont s (buffer,bu fBytes,flags) (AO,DO,Dl)

239

Appendix

dos.library

-$OOlE -30
-$0024 -36
-$002A -42
-$0030 -48
-$0036 -54
-$003C -60
-$0042 -66
-$0048 -72
-$004E -78
-$0054 -84
-$005A -90
-$0060 -96
-$0066 -102
-$006C -108
-$0072 -114
-$0078 -120
-$007E -126
-$0084 -132
-$008A -138
-$0090 -144
-$0096 -150
-$009C -156
-$00A2 -162
-$00A8 -168
-$OOAE -174
-$00B4 -180
-$OOBA -186
-$OOCO -192
-$00C6 -198
-$OOCC -204
-$0002 -210
-$0008 -216
-$OOOE -222

exec.library

-$OOlE -30
-$0024 -36
-$002A -42
-$0030 -48
-$0036 -54
-$003C -60
-$0042 -66
-$0048 -72
-$004E -78
-$0054 -84

-$005A -90

-$0060 -96
-$0066 -102
-$006C -108

-$0072 -114

240

Amiga Machine Language

Open (name,accessMode) (01,02)
Close (file) (01)
Read (file,buffer,length) (01,02,03)
Write (file,buffer,length) (01,02,03)
Input ()
Output ()
Seek (file,position,offset) (01,02,03)
OeleteFile (name) (01)
Rename (oldName,newNamel (01,02)
Lock (name,type) (01,02)
UnLock (lock) (01)
OupLock (lock) (01)
Examine (lock,fileInfoBlock) (01,02)
ExNext (lock,fileInfoBlock) (01,02)
Info (lock,parameterBlock) (01,02)
CreateOir (name) (01)
CurrentOir (lock) (Ol)
IoErr ()
CreateProc (name,pr i,segLi st,stackSi ze) (01,02,03,04)
Exit (returnCode) (01)
LoadSeg (fileName) (D1)
UnLoadSeg (segment) (01)
GetPacket (wait) (01)
QueuePacket (packet) (01)
OeviceProc (name) (01)
SetComment (name,comment) (01,02)
SetProtection (name,mask) (01,02)
OateStamp (date) (01)
Oelay (timeout) (01)
WaitForChar (file,timeout) (01,02)
ParentOir (lock) (01)
IsInteractive (file) (01)
Execute (string,file,file) (01,02,03)

Supervisor ()
ExitIntr ()
Schedule ()
Reschedule ()
Switch ()
Oispatch ()
Exception ()
InitCode (startClass,version) (00,01)
InitStruct (initTable,memory,sizel (A1,A2,OO)
MakeLibrary (funcIni t,st ruct Ini t,liblnit,dataSi ze,
codeSi ze) (AO,A1,A2,OO,Ol)
MakeFunct ions (t arget,funct ionArr ay, funcOi spBase)
(AO,A1,A2)
FindResident (name) (Al)
InitResident (resident,segList) (A1,Ol)
Alert (alertNum,parameters) (07,A5)
Oebug ()

Abacus

-$0078 -120
-$007E -126
-$0084 -132
-$008A -138
-$0090 -144
-$0096 -150
-$009C -156
-$00A2 -162
-$00A8 -168
-$OOAE -174
-$00B4 -180
-$OOBA -186
-$OOCO -192
-$00C6 -198
-$OOCC -204
-$00D2 -210
-$00D8 -216
-$OODE -222
-$00E4 -228
-$OOEA -234
-$OOFO -240
-$00F6 -246
-$OOFC -252
-$0102 -258
-$0108 -264
-$OlOE -270
-$0114 -276
-$OllA -282
-$0120 -288
-$0126 -294
-$012C -300
-$0132 -306
-$0l38 -312
-$Ol3E -318
-$0144 -324
-$014A -330
-$0150 -336
-$0156 -342
-$015C -348
-$0162 -354
-$0168 -360
-$016E -366
-$0174 -372
-$017A -378
-$0180 -384
-$0186 -390
-$018C -396
-$0192 -402
-$0198 -408
-$019E -414
-$OlM -420
-$OlAA -426
-$OlBO -432
-$01B6 -438
-$OlBC -444
-$01C2 -450

Disable ()
Enable ()
Forbid ()
Permit ()
SetSR (newSR,mask) (DO,Dl)
SuperState ()
UserState (sysStack) (DO)
SetlntVector (intNumber ,interrupt) (DO,Al)
AddlntServer (intNumber,interrupt) (DO,Al)
RemlntServer (intNumber,interrupt) (DO,Al)
Cause (interrupt) (Al)
Allocate (freeList,byteSize) (AO,DO)

Appendix

Deallocate (freeList,memoryBlock,byteSize) (AO,Al,DO)
AllocMem (byteSize,requirement s) (DO,Dl)
AllocAbs (byteSize,location) (DO,Al)
FreeMem (memoryBlock, byteSize) (Al,DO)
AvailMem (requirements) (Dl)
AllocEntry (entry) (AO)
FreeEntry (entry) (AO)
Insert (li st,node,pred) (AO,Al,A2)
AddHead (list,node) (AO,Al)
AddTail (list,node) (AO,Al)
Remove (node) (Al)
RemHead (list) (AO)
RemTail (list) (AO)
Enqueue (list,node) (AO,Al)
FindName (list,name) (AO,Al)
AddTask (task,initPC,finalPC) (Al,A2,A3)
RemTask (task) (Al)
FindTask (name) (Ai)
SetTaskPri (task,priority) (Al,DO)
SetSignal (newSignals,signalSet) (DO,Dl)
Set Except (newSignals,signalSet) (DO,Dl)
Wait (signalSet) (DO)
Signal (task,signalSet) (Al,DO)
AllocSignal (signalNum) (DO)
FreeSignal (signalNum) (DO)
AllocTrap (trapNum) (DO)
FreeTrap (trapNum) (DO)
AddPort (port) (Al)
RemPort (port) (Al)
PutMsg (port,message) (AO,Al)
GetMsg (port) (AO)
ReplyMsg (message) (Al)
WaitPort (port) (AO)
FindPort (name) (Al)
AddLibrary (library) (Al)
RemLibrary (library) (Al)
OldOpenLibrary (libName) (Al)
CloseLibrary (library) (Al)
SetFunction (librarY,funcOf f set,funcEntry) (Al,AO,DO)
SumLibrary (library) (Al)
AddDevice (device) (Al)
RemDevice (device) (Al)
OpenDevice (devName,unit,ioRequest,flags) (AO,DO,Al,Dl)
CloseDevice (ioRequest) (Al)

241

Appendix

-$01C8
-$OlCE
-$01D4
-$OlDA
-$OlEO
-$01E6
-$OlEC

,-$01F2
-$01F8
-$OlFE
-$0204
-$020A
-$0210
-$0216
-$02lC
-$0222
-$0228

-456
-462
-468
-474
-480
-486
-492
-498
-S04
-SlO
-S16
-S22
-528
-534
-540
-546
-552

Amiga Machine Language

DolO (ioRequest) (Al)
SendIO (ioRequest) (Al)
CheckIO (ioRequest) (Al)
WaitIO (ioRequest) (Al)
AbortIO (ioRequest) (Al)
AddRescource (rescource) (Al)
RemRescource (rescource) (Al)
OpenRescource (resName,version) (Al,DO)
RawIOlnit ()
RawMayGetChar ()
RawPutChar (char) (DO)
RawDoFmt () (AO,Al,A2,A3)
GetCC ()
TypeOfMem (address) (Al)
Procedure (semaport,bidMsg) (AO,Al)
Vacate (semaport) (AO)
OpenLibrary (libName,version) (A1,DO)

graphics.library

-$OOlE -30

-$00;/4 -36

-$002A -42
-$0030 -48
-$0036 -54
-$003C -60
-$0042 -66
-$0048 -72
-$004E -78
-$0054 -84
-$OOSA -90
-$0060 -96
-$0066 -102
-$006C -108
-$0072 -114
-$0078 -120
-$007E -126
-$0084 -132
-$008A -138
-$0090 -144
-$0096 -lSO
-$009C -lS6
-$00A2 -162
-$00A8 -168

-$OOAE -174
-$00B4 -180
-$OOBA -186
-$OOCO -192
-$00C6 -198
-$OOCC -204
-$00D2 -210

242

BltBi tMap (srcBi tMap,srcX,srcY ,destBi tMap,destX,dest Y,
si zeX,s i ze Y ,mint erm,mas k,t empA)
(AO,DO,Dl,A1,D2,D3,D4 ,DS,D 6,D7 ,A2)
BIt Template (source,s rcX,s rcMod,destRastPort,destX,
dest Y ,si zeX,s izeY) (AO,DO,Dl,Al,D2,D3,D4 ,D5)
ClearEOL (rastPort) (Al)
Clear Screen (rast Port) (Al)
Text Length (RastPort,st r ing,count) (Al,AO,DO)
Text (RastPort,Str ing,count) (Al,AO,DO)
Set Font (RAstPort ID,textFont) (A1,AO)
OpenFont (textAttr) (AO)
CloseFont (textFont) (Al)
AskSoftStyle (rastPort) (Al)
SetSoftStyle (rastPort,style,enable) (Al,DO,Dl)
AddBob (bob,rastPort) (AO,Al)
AddVSprite (vSprite,rastPort) (AO,Al)
DoCollision (rastPort) (A1)
DrawGList (rastPort,viewPort) (Al,AO)
InitGel s (dummyHead,dummyTail,Gels In fo) (AO,Al,A2)
InitMasks (vSprite) (AO)
RemIBob (bob,rastPort,viewPort) (AO,Al,A2)
RemVSprite (vSprite) (AO)
SetCollision (type,routine,gelslnfo) (DO,AO,Al)
SortGList (rastPort) (A1)
AddAnimOb j (ob j,anima t ionKey,rastPort) (AO,Al,A2)
Animate (animationKey,rastPort) (AO,Al)
etGBuffer s (animationObj,rastPort,doubleBuffer)
(AO,Al,DO)
InitGMasks (animationObj) (AO)
GelsFuncE ()
GelsFuncF ()
LoadRGB4 (viewPort,colors,count) (AO,Al,DO)
InitRastPort (rastPort) (Al)
InitVPort (viewPort) (AO)
MrgCop (view) (Al)

Abacus

-$00D8 -216
-$OODE -222
-$00E4 -228
-$OOEA -234
-$OOFO -240
-$00F6 -246
-$OOFC -252
-$0102 -258
-$0108 -264
-$010E -270
-$0114 -276
-$Ol1A -282

-$0120 -288
-$0126 -294
-$012C -300
-$0132 -306
-$0138 -312

-$013E -318
-$0144 -324
-$014A -330
-$0150 -336
-$0156 -342
-$015C -348
-$0162 -354
-$0168 -360
-$016E -366
-$0174 -372
-$017A -378
-$0180 -384
-$0186 -390
-$018C -396

-$0192 -402
-$0198 -408
-$019E -414
-$01A4 -420
-$OlAA -426
-$OlBO -432
-$01B6 -438
-$OlBC -444
-$01C2 -450
-$01C8 -456
-$OlCE -462
-$01D4 -468
-$OlDA -474
-$OlEO -480
-$01E6 -486
-$OlEC -492
-$01F2 -498
-$01F8 -504
-$OlFE -510
-$0204 -516
-$020A -522
-$0210 -528

Appendix

MakeVPort (view,viewPort) (AO,A1)
LoadView (view) (A1)
WaitBlit ()
SetRast (rastPort,color) (A1,DO)
Move (rastPort,x,y) (A1,DO,D1)
Draw (rastPort,x,y) (A1,DO,D1)
AreaMove (rastPort,x,y) (A1,DO,D1)
AreaDraw (rastPort,x,y) (A1,DO,D1)
AreaEnd (rastPort) (A1)
waitToF ()
QBltt (blit) (AI)
InitArea (arealnfo,voctorTable,vectorTableSize)
(AO,A1, DO)
SetRGB4 (viewPort,index,r,g,b) (AO,DO,D1,D2,D3)
QBSBlit (blit) (A1)
BltClear (memory,size,flags) (A1,DO,D1)
RectFill (rastPort,xl,yl,xu,yu) (A1,DO,D1,D2,D3)
BltPattern (rastPort,ras,xl,yl,maxX,maxY,f illBytes)
(Al,AO,DO,D1,D2,D3,D4)
ReadPixel (rastPort,x, y) (A1,DO,Dl)
Wr iteP ixel (rastPort,x, y) (A1,DO,D1)
Flood (rastPort,mode,x,y) (A1,D2,DO,D1)
PolyDraw (rastPort,count,polyTable) (A1,DO,AO)
SetAPen (rastPort,pen) (A1,DO)
SetBPen (rastPort,pen) (A1,DO)
SetDrMd (rastPort,drawMode) (A1,DO)
InitView (view) (A1)
CBump (copperList) (A1)
CMove (copperList,destination,data) (A1,DO,D1)
CWait (copperList,x,y) (A1,DO,D1)
VBeamPos ()
InitBi tMap (bitMap,depth,width,heigth) (AO,DO,D1,D2)
ScrollRaster (rastPort,dX,dY,minx,miny,maxx,maxy)
(A1,DO,D1,D2,D3,D4,D5)
WaitBOVP (viewPort) (AO)
GetSprite (simpleSprite,num) (AO,DO)
FreeSprite (num) (DO)
ChangeSprite (vp,simpleSpr ite,data) (AO,A1,A2)
MoveSprite (viewPort,simpleSprite,x,y) (AO,A1,DO,D1)
LockLayerRom (layer) (A5)
UnlockLayerRom (layer) (A5)
SyncSBitMap (1) (AO)
CopySBitMap (11,12) (AO,A1)
OwnBlitter ()
DisownBlitter ()
InitTmpRas (tmpras,buff,size) (AO,A1,DO)
AskFont (rastPort,textAttr) (A1,AO)
AddFont (textFont) (A1)
RemFont (textFont) (A1)
AllocRaster (width,heigth) (DO,D1)
FreeRaster (planeptr,width,heigth) (AO,DO,D1)
AndRectRegion (rgn,rect) (AO,A1)
OrRectRegion (rgn,rect) (AO,A1)
NewRegion ()
** reserved **
ClearRegion (rgn) (AO)

243

Appendix

-$0216 -534
-$021C -540
-$0222 -546
-$0228 -552

-$022E -558
-$0234 -564
-$023A -570
-$0240 -576
-$0246 -582
-$024C -588
-$0252 -594
-$0258 -600

-$025E -606

icon.library

-$OOIE -30
-$0024 -36
-$002A -42
-$0030 -48
-$0036 -54
-$003C -60
-$0042 -66
-$0048 -72
-$004E -78
-$0054 -84
-$005A -90
-$0060 -96
-$0066 -102
-$006C -108

Amiga Machine Language

DisposeRegion (rgn) (AO)
FreeVPortCopLists (viewPort) (AO)
FreeCopList (coplist) (AO)
ClipBlit (srcrp,srcX,srcY,destrp,destX,destY,si zeX,
sizeY,minterm) (AO,DO,Dl,Al,D2,D3,D4,D5,D6)
XorRectRegion (rgn, rect) (AO,Al)
FreeCprList (cprlist) (AO)
GetColorMap (entries) (DO)
FreeColorMap (colormap) (AO)
GetRGB4 (colormap,entry) (AO,DO)
Scroll VPort (vp) (AO)
UCopperListInit (copperlist,num) (AO,DO)
FreeGBuffers (animationObj,rastPort,
doubleBuffer) (AO,Al,DO)
Bl tBitMapRastPort (srcbm,srcx,srcy,dest rp,destX,
dest Y ,si zeX,si zeY,minter) (AO,DO,Dl,Al,D2 ,D3,D 4,D5,D 6)

GetWBObject (name) (AO)
PutWBObject (name,object) (AO,Al)
GetIcon (name,icon,freelist) (AO,Al,A2)
Putlcon (name,icon) (AO,Al)
FreeFreeList (freelist) (.Z\.O)
FreeWBObject (WBObject) (AO)
AllocWBObject ()
AddFreeList (freelist,mem,size) (AO,AI,A2)
GetDiskObject (name) (AO)
putDiskObject (name,diskobj) (AO,AI)
FreeDiskObj (diskobj) (AO)
FindToolType (toolTypeArray,typeName) (AO,Al)
MatchToolValue (typeString,value) (AO,Al)
BumbRevision (newname,oldname) (AO,Al)

intuition.library

-$OOIE -30
-$0024 -36

-$002A -42
-$0030 -48
-$0036 -54

-$003C -60
-$0042 -66
-$0048 -72
-$004E -78
-$0054 -84
-$005A -90
-$0060 -96
-$0066 -102

-$006C -108

-$0072 -114

-$0078 -120

244

OpenIntuition ()
Intuition (ievent) (AO)
AddGadget (AddPtr,Gadget,Position) (AO,Al,DO)
ClearDMRequest (Window) (AO)
ClearMenuSt r ip (Window) (AO)
ClearPointer (Window) (AO)
CloseScreen (Screen) (AO)
CloseWindow (Window) (AO)
CloseWorkBench ()
CurrentTime (Seconds,Micros) (AO,Al)
DisplayAlert (AlertNumber,St r ing,Height) (DO,AO,Dl)
DisplayBeep (Screen) (AO)
DoubleClick (s seconds,smicr os,cseconds,cmicros)
(DO,Dl,D2,D3)
DrawBorder (Rport,Border ,LeftOf f set, TopOf f set)
(AO,Al,DO,Dl)
DrawImage (RPort,Image,LeftOff set,TopOff set)
(AO,Al,DO,Dl)
EndRequest (requester ,window) (AO,AI)

Abacus

-$007E -126
-$0084 -132
-$008A -138
-$0090 -144
-$0096 -150
-$009C -156

-$00A2 -162
-$00A8 -168
-$OOAE -174
-$00B4 -180
-$OOBA -186
-$OOCO -192
-$00C6 -198
-$OOCC -204
-$00D2 -210
-$00D8 -216
-$OODE -222
-$00E4 -228
-$OOEA -234
-$OOFO -240
-$00F6 -246
-$OOFC -252
-$0102 -258
-$0108 -264
-$010E -270

-$0114 -276

-$OllA -282
-$0120 -288
-$0126 -294
-$012C -300
-$0132 -306
-$0138 -312
-$013E -318

-$0144 -324
-$014A -330
-$0150 -336
-$0156 -342
-$015C -348

-$0162 -354
-$0168 -360

-$016E -366
-$0174 -372
-$017A -378
-$0180 -384
-$0186 -390
-$018C -396
-$ 0 192 -402

-$0198 -408
-$019E -414

-$01A4 -420

Appendix

GetDefPrefs (preferences,size) (AO,DO)
GetPrefs (preferences,size) (AO,DO)
InitRequester (req) (AO)
ItemAddress (MenuStrip,MenuNumber) (AO,DO)
ModifyIDCMP (Window,Flags) (AO,DO)
ModifyProp (Gadget,Ptr,Reg,Flags,HPos,VPos,HBody,
VBody) (AO,Al,A2,DO,Dl,D2,D3,D4)
MoveScreen (Screen,dx,dy) (AO,DO,D1)
MoveWindow (Window,dx,dy) (AO,DO,D1)
Off Gadget (Gadget,Ptr,Req) (AO,A1,A2)
Off Menu (Window,MenuNumber) (AO,DO)
OnGadget (Gadget,Ptr ,Req) (AO,Al,A2)
OnMenu (Window,MenuNumber) (AO,DO)
OpenScreen (OSArgs) (AO)
OpenWindow (OWArgs) (AO)
OpenWorkBench ()
PrintIText (rp,itext,left,top) (AO,Al,DO,Dl)
RefreshGadgets (Gadgets,Ptr,Req) (AO,Al,A2)
RemoveGadgets (RemPtr,Gadget) (AO,Al)
ReportMouse (Window,Boolean) (AO,DO)
Request (Requester,Window) (AO,Al)
ScreenToBack (Screen) (AO)
SCreenToFront (Screen) (AO)
SetDMRequest (Window,req) (AO,A1)
SetMenuStrip (Window,Menu) (AO,A1)
SetPointer (Window,Pointer,Height,Width, XOffset,
YOffset) (AO,A1,DO,Dl,D2,D3)
SetWindowTitles (Window,windowTitle,screenTitle)
(AO,Al,A2)
ShowTitle (Screen,Showlt) (AO,DO)
SizeWindow (Window,dx,dy) (AO,DO,Dl)
ViewAddress ()
ViewPortAddress (Window) (AO)
WindowToBack (Window) (AO)
WindowToFront (Window) (AO)
WindowLimits (Window,minwidth,minheight,maxwidth,
maxheight) (AO,DO,Dl,D2,D3)
SetPrefs (preferences,size,flag) (AO,DO,D1)
IntuiTextLength (itext) (AO)
WBenchToBack ()
WBenchToFront ()
AutoRequest (WIndow,Body,PText,NText,PFlag,NFlag,W,H)
(AO,A1,A2,A3,DO,D 1,D2,D3)
BeginRefresh (Window) (AO)
BuildSysRequest (Window,Body,PosText,NegText,Flags,
W,H) (AO,A1,A2,A3,DO,D1,D2)
EndRefresh (Window,Complete) (AO,D 0)
FreeSysRequest (Window) (AO)
MakeScreen (Screen) (AO)
RemakeDisplay ()
RethinkDisplay ()
AllocRemember (RememberKey,Size,Flags) (AO,DO,Dl)
AlohaWorkbench (wbport) (AO)
FreeRemember (RememberKey,ReallyForget) (AO,DO)
LockIBase (dontknow) (DO)
UnlockIBase (IBLock) (AO)

245

Appendix

layers.library

-$OOlE -30
-$0024 -36

-$002A -42

-$0030 -48
-$0036 -54
-$003C -60
-$0042 -66
-$0048 -72
-$004E -78
-$0054 -84
-$005A -90
-$0060 -96
-$0066 -102
-$006C -108

-$0072 -114
-$0078 -120
-$007E -126
-$0084 -l32
-$008A -138
-$0090 -144
-$0096 -150
-$009C -156
-$00A2 -162
-$00A8 -168

mathffp.library

-$OOlE -30
-$0024 -36
-$002A -42
-$0030 -48
-$0036 -54
-$003C -60
-$0042 -66

-$0048 -72
-$004E -78
-$0054 -84

Amiga Machine Language

InitLayers (li) (AO)
CreateUpf ront Layer (li,bm,xO,yO,x1,y1,f lags,bm2)
(AO,A1,00,01,02,03,04,A2)
CreateBehindLayer (li,bm,xO,yO,x1,y1,f lags,bm2)
(AO,A1,00,01,02,03,04,A2)
UpfrontLayer (li,layer) (AO,A1)
BehindLayer (li,layer) (AO,A1)
MoveLayer (li,layer,dx,dy) (AO,Al,OO,Ol)
SizeLayer (li,layer,dx,dy) (AO,A1,00,01)
ScrollLayer (li,layer,dx,dy) (AO,A1,00,01)
BeginUpdate (layer) (AO)
EndUpdate (layer) (AO)
OeleteLayer (li,layer) (AO,A1)
LockLayer (li,layer) (AO,A1)
UnlockLayer (li,layer) (AO,A1)
LockLayers (Ii) (AO)
UnlockLayers (li) (AO)
LockLayerlnfo (Ii) (AO)
SwapBitsRastPortClipRect (rp,cr) (AO,Al)
Which Layer (li,x,y) (AO,OO,Ol)
UnlockLayerlnfo (li) (AO)
NewLayerlnfo ()
OisposeLayerlnfo (Ii) (AO)
FattenLayerlnfo (Ii) (AO)
ThinLayerInfo (li) (AO)
MoveLayerlnFrontOf (layer to_move,
layer_to_be in front_of) (AO,Al)

SPFix (float) (00)
SPFlt (integer) (00)
SPCmp (leftFloat,rightFloat) (01,00)
SPTst (float) (01)
SPAbs (float) (00)
SPNeg (float) (00)

SPAdd (leftFloat,rightFloat) (01,00)
SPSub (leftF loat,r ightF loat) (01,00)
SPMul (leftFloat,rightFloat) (01,00)
SPoiv (leftFloat,rightFloat) (01,00)

math ieeedou bbas.library

-$OOlE -30 IEEEOPFix (integer,integer) (00,01)
-$0024 -36 IEEEOPFlt (integer) (00)
-$002A -42 IEEEOPCmp (integer ,integer ,in teger ,intege r)

(00,01,02,03)
-$0030 -48 IEEEOPTst (integer,integer) (00,01)
-$0036 -54 IEEEOPAbs (integer,integer) (00,01)
-$003C -60 IEEEOPNeg (integer,integer) (00,01)

246

Abacus Appendix

-$0042

-$0048

-$004E

-$0054

-66

-72

-78

-84

IEEEOPAdd (integer,integer ,integer ,integer)
(00,01,02,03)
IEEEOPSub (integer,integer,integer ,integer)
(00,01,02,03)
IEEEOPMul (integer,integer ,integer ,integer)
(00,01,02,03)
IEEEOPOi v (integer,integer,integer,integer)
(00,01,02,03)

mathtrans.library

-$OOlE -30
-$0024 -36
-$002A -42
-$0030 -48
-$0036 -54
-$003C -60
-$0042 -66
-$0048 -72
-$004E -78
-$0054 -84
-$005A -90
-$0060 -96
-$0066 -102
-$006C -108
-$0072 -114
-$0078 -120
-$007E -126

potgo.library

-$0006 -6
-$OOOC -12
-$0012 -18

ti mer.1 ibrary

-$002A -42
-$0030 -48
-$0036 -54

SPAtan (float) (00)
SPSin (float) (00)
SPCos (float) (00)
SPTan (float) (00)
SPSincos (leftFloat,rightFloat) (01,00)
SPSinh (float) (DO)
SPCosh (float) (DO)
SPTanh (float) (DO)
SPExp (float) (00)
SPLog (float) (DO)
SPPow (leftFloat,rightFloat) (01,00)
SPSqrt (float) (00)
SPTieee (float) (00)
SPFieee (float) (00)
SPAs in (float) (00)
SPAcos (float) (00)
SPLog10 (float) (DO)

AllocPotBits (bits) (00)
FreePotBits (bits) (00)
WritePotgo (word,mask) (DO,Ol)

AddTime (dest,src) (AO,A1)
SubTime (dest,src) (AO,A1)
CmpTime (dest,src) (AO,A1)

translator .library

-$OOlE -30 Translate (inputString,inputLength,outputBuf fer,
bu ffer Size) (AO,OO,A1,Ol)

247

Appendix Amiga Machine Language

Overview of MC68000 instructions

Abbreviations (Symbols) used

248

Label
Reg
An
Dn
Source
Dest
<ea:>
#n

A label (address)
Register
Address register n
Data register n
Source operand
Destination operand
Address or Register
Direct value

Mn~mQni!;; M~i!nin2
ABCD Source,Dest Addition of two BCD numbers
ADD Source,Dest Binary addition
ADDA Source,An Binary addition to an address register
7\T"\T'\T
.nuU.l. #n,<ea> Addition witJ'1 a constant
ADDQ #n,<ea> Fast addition of a constant which only needs

bits 0 to 7
ADDX Source,Dest Addition with transfer to X flag
AND Source,Dest Logical AND
AND I #n,<ea> Logical AND with a constant
ASL n,<ea> Arithmetic shift left (*21'.0)
ASR n,<ea> Arithmetic shift right (/21'.0)
Bcc Label Branch depending on the condition
BCRG #n,<ea> Change bit n (0 becomes 1 and vice versa)
BCLR #n,<ea> Erase bit n
BRA Label Unconditional branch (similar to IMP)
BSET #n,<ea> Set bit n
BSR Label Branch to a subroutine. The return address is

put on the stack just like for the ISR com-
mand. You return with a RTS command.

BTST #n,<ea> Test bit n, the result goes in the Z flag
CRK <ea>,Dx Check a data register
CLR <ea> Erase an operand
CMP Source,Dest Compare two operands
CMPA <ea>,An Compare with an address register
CMPI #n,<ea> Compare with a constant
CMPM Source,Dest Compare two operands in memory
DBcc Reg ,Label Check condition, decrement and branch. This

command is used with loops a lot.
DIVS Source,Dest Sign correct division of a 32 bit destination

operand by a 16 bit source operand. The result
goes in the LO word of the destination long
word. The remainder goes in the HI word.

DIVU Source,Dest Division without sign, similar to DIYS

Abacus

Mnemonic
EOR Source,Dest
EORl #n,<ea>
EXG Rn,Rn

EXT
JMP
JSR

LEA
LINK
LSL
LSR
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVEA
MOVEM
MOVEM
MOVEP
MOVEQ

MULS

MULU
NBCD
NEG
NEGX
NOP
NOT

OR
ORl
PEA
RESET
ROL
ROR
ROXL
ROXR
RTE
RTR
RTS

SBCD
See
STOP

Do
Label
Label

<ea>,An
An,#n
n,<ea>
n,<ea>
Source,Dest
SR,<ea>
<ea>,SR
<ea>,CCR
USP,<ea>
<ea>,USP
<ea>,An
Regs,<ea>
<ea>,Regs
Source,Dest
#n,Dn

Source,Dest

Source,Dest
Source,Dest
<ea>
<ea>

Source,Dest
#n,<ea>
<ea>

n,<ea>
n,<ea>
n,<ea>
n,<ea>

Source,Dest
<ea>

Appendix

Meanjn2
Exclusive OR
Exclusive OR with a constant
Exchange the contents of two registers (don't
mix this up with SWAP).
Sign correct extension to double width
Jump to an address (similar to BRA)
Jump to a subroutine. The return address is put
on the stack. A RTS returns to the command
after this one.
Load an effective address into An
Build stack area
Logical shift left
Logical shift right
Transfer a value from Source to Dest.
Transfer the Status register contents
Transfer the Status register contents
Load flags
Transfer the User Stackpointer
Transfer the User Stackpointer
Transfer a value to address register An
Transfer several registers at the same time
Transfer several registers at the same time
Transfer data to peripheral devices
Transfer a 8 bit constant to data register Dn
quickly
Sign correct multiplications of two words to a
long word
Multiplication without sign, similar to MULS
Negate a BCD number (Nine's complement)
Negate an operator (Two's complement)
Negates an operator with transfer
No Operation
Inverts an operand (Os become Is and vice
versa)
Logical OR
Logical OR with a constant
Put an address on the stack
Reset peripheral device (carefulI!)
Rotate left
Rotate right
Rotate left with transfer to X flag
Rotate right with transfer to X flag
Return from an Exception
Return and load flags
Return from a subroutine (after a BSR or JSR
command)
Subtract two BCD coded numbers
Set a byte to -1 if the condition is fulfilled
Stop work. (careful!) Leads to a TRAPV Ex­
ception.

249

Appendix

250

Mnemonic
SUB
SUBA
SUBr
SUBQ
SUBX
SWAP

TAS
TRAP
TRAPV

Source,Dest
<ea>,An
#n,<ea>
#n,<ea>
Source,Dest
Dn

<ell>

#n

UNLK An

Amiga Machine Language

Meanim:
Binary subtraction.
Binary subtraction from an address register
Subtract a constant.
Fast subtraction of a three bit constant.
Subtraction with transfer to X flag
Exchange the two halves of the register (the
upper and lower 16 bits)
Test a bit and set bit 7
Jump to an Exception
Check if overflow flag set, then TST <ea>.
Test an operand and set the N and Z flag
Un-link stack area

Index
absolute addressing 20 border structure 202, 204
absolute long 24 branch instructions 30
absolute long addressing 20 BSR 23
absolute short 24 bus error 27, 233
absolute short addressing. 20 byte 5, 19
address error 27, 233
address register 40 Carry bit 16
address register A 7 24 carry clear 31
address register direct 20,24 carry set 31
address register indirect 21,24 character fonts 102
address register indirect with 16 bit character mode 180
displacement 24 character set 167
address register indirect with 8 bit index Chip RAM 10
value 24 CHKconunand 233
address register indirect with a 16 bit CHK instruction 27,28
displacement 21 chunks 11
address register indirect with an 8 bit CLI 12, 143
index 21 clist.library 101
address register indirect with post- CloseLibrary 163
increment 23,24 Close Screen 169
address register indirect with pre- CON 108, 127
decrement 23,24 conditional branch. 30
address registers 15,24 Condition codes 30, 31
addressing 19,24 conditional operation 30
addressing types 41 console input/output 108
Agnus 9 console window 102
ALIGN 19,50 console.library 102
AllocAbs 106 control characters 117
AllocMem 105 Control register A 96
AmigaDOS 108 Control register B 96
arithmetic operations 36 Control Sequence Introducer 118
AssemPro 50 Copper lists 101
Audio Devices 90 custom chips 9, 15
AutoRequest 179 Custom screen 167
Axxx command emulation 233
Axxx-instruction emulation 27,28 Data direction register A 96

Data direction register B 96
BASIC 3 data register 20
Binary Coded Decimal 37 Data register A 96
binary system 6 Data register B 96
bit manipuation 38 data register direct 20, 24
bit map 177 data registers 15,24
bit planes 169 debugger 47,50
Blitter 102 decimal system 6
boolean gadget 205 Denise 9
border 202 device 83

251

Index

direct addressing,
Direct Memory Access
directory
disk
disk drive
diskfont.library
DisplayBeep
division by zero
DMA control register
dos.library
DrawBorder

EEROM
egisters
END
EPROM
equal
EVEN
Event register
events
Excunine
Exception
Exception routines
Exceptions
exec.library
Execute

false
Fast RAM
FIFO
FilelnfoBlock
flags
floating point operations.
frequency

20
90

143
152, 154

139
102
172

27,28,233
91,94

101
202

4
15
50
4

31
19, 50

96
182
147
231
233

26
101
143

31
10
16

Fxxx -instruction emulation

147, 152
41

102
91

27,28,233

gadget
gadget structure
gadget type
gadgets
GetMsg
graphics .library
greater or equal
greater than

handle
handle number
hardware registers
hexadecimal system
higher than

252

205
205, 208, 209

208
167 176

182
102

31
31

109, 139
113
96

7
31

Amlga Machine Language

icon.library
icons
IDCMP flag
lllegal command
illegal instruction
Image
Image structure
indirect access
indirect addressing
interrupt

102
102

174, 179, 182, 183
233

27
199

200, 216
21
23
28

Interrupt control register
interrupt level

96
29

Interrupt mask
Interrupts
Intuition
Intuition Message Structure
intuition.library

joystick
JSR

keyboard input
Kicks tart
kilobyte

layers.library
less or equal
less than
level 1-7 interrupt
libraries
library functions
LIFO
List
Lock
logical operations
long word
loudness level
lower

machine language
macros
masking
math functions
mathffp.library
mathieeedoubbas.library
mathtrans.library
MC68000
MC68000 instructions
MC68000 processor
memcode
memory map

17
29

163
183
101

98
23

122, 124
4
5

102
31
31

27,28,233
101

9
16

144
147

37
6, 19

91
31

3
102
32

102
102
102
102

15
34,41

3
47
10

Abacus Index

menu item 187 program counter indirect with 8 bit index
menu programming 184 value 24
menu structure 184, 194 program counter with 16 bit diplacement
menu title 185 23
menus 101 program counter with displacement 22
message 182 Programs 125, 148
minus 31 adding numbers 63
mnenomic 47 ASCII to Decimal 78
mode 109 ASCII to REX 75
mouse 98 Beep 92
move data 40 Control sequence output 120
multi-tasking 10,12 converting numbers 70
music 90 Decimal to ASCII 73
narrator.device 128 Dir 144

Direct disk access 152
negative numbers 6 Disk Access 157
not equal 31 hex to ASCII 70
Number systems 6 Intuition Demo 219

joystick 88
object me 48 mouse 86
octal system 7 open window 107
offset 103 Open-Close window 110
OpenLib 103 OpenLib 103
OpenLibrary 163 Open and Move screen 171
OpenScreen 165 Sine wave 92
OpenWindow 174 Siren 93
operating system 36 Sort program 67
Overflow 16 sorting 66
Overflow clear 31 special keys 84
Overflow set 31 Speech 128

Talking program 133
Paula 9,90 Text output 115
PIA 96 timing 85
PIA A 96 PROM 4
PIAB 96 PropInfo structure 218
pitch 133 Proportional gadget 217
PlaneOnOff 200 Proportional gadgets 216
PlanePick 200 PRT 127
plus 31 pseudo-op 19
pointer 103
potentiometer. 98 RAM 10,83
potgo.library 102 RAM disk 11
printer 127 RAW 111, 127
PrintlText 197 registers 5,83
privilege 26 requester 179
privilege violation 27,28,233 RESET
processor mode 17 starting PC 27
processor status 16 starting SSP 27
program counter 15 ROM 4, 83
program counter indirect with 16 bit rotate 38
displacement 24 RTE 233

253

Index Amlga Machine Language

screen memory 102 TRAPV instruction 27,28,233
screen output 112 true 31
screen structure 169, 177
screen table 165 Unassigned interrupt 28
screens 101 Unauthorized Interrupt 233
scrolling 172 Undo buffer 213
SEKA 53 uninitialized interrupt 27,28,233
SER 128 unjustified interrupt 27
Serial data register 96 user 25
serial interface 128 user byte 16
SetMenuStrip 184 User Interrupt vector 233
shift 38 user interrupt vectors 27, 29
Smart-Refresh-Mode 176 user mode 25
sound chip 90 User port 182
Source 48 User stack 232
special keys 84 user stack pointer 15, 232
SpecialInfo pointer 216 UserS tate 232
Speciallnfo structure 212
speech 132, 133 WaitForChar 124
speech synthesizer 128 window 106
square wave 90 window definition table 174
stack 16,40 window structure 179, 182
Stack Pointer i6,23 windows 101
stack pointers 15 WOM 5
stacks 24 Word 19
status register 15, 16, 25, 29 words 6
String gadget 211
Stringlnfo structure 213,214
subroutines 63
SuperState 232
supervisor 25
supervisor bit 25
supervisor mode 26, 35, 231
Supervisor stack 232
symbol table 56
system byte 16, 17
system stack pointer 15

tasks 12
text structure 179
text structures 180
time slicing 12
Timer AHI 96
TimerALO 96
TimerB HI 96
TimerB LO 96
timer. library 102
trace 27,233
trace bit 28
trans lator. library 102
TRAP instructions 27,29,233

254

Companion Diskette

AMIGA

Machine Language

Companion diskette

For your convenience, the program listings contained in this book are

available on an Amiga formatted floppy diskette. You should order the

diskette if you want to use the programs, but don't want to type them in

from the listings in the book.

All programs on the diskette have been fully tested. You can change the

programs for your particular needs. The diskette is available for $14.95 plus

$2.00 ($5.00 foreign) for postage and handling.

When ordering, please give your name and shipping address. Enclose a

check, money order or credit card information. Mail your order to:

Abacus Software
5370 52nd Street SE

Grand Rapids, MI49512

Or for fast service, call 616/698-0330.
Credit Card orders only 1-800-451-4319.

Abacusllilliiiilll'l 1llllilill!1

Amiga Catalog

OrderToll Free 1-800-451-4319

Amiga for Beginners

A perfect introductory book if you're a new or prospective Amiga owner.
Amiga for Beginners
introduces you to Intuition (the
Amiga's graphic interface), the
mouse, windows and the
versatile CLI. This first volume
in our Amiga series explains
every practical aspect of the
Amiga in plain English. Clear,
step-by-step instructions for
common Amiga tasks. Amiga
for Beginners is all the info you
need to get up and running.

Topics include:

• Unpacking and connecting
the Amiga components

• Starting up your Amiga
• Exploring the Extras disk
• Taking your first step in AmigaBASIC programming language
• AmigaOOS functions
• Customizing the Workbench
• Using the CLI to perform "housekeeping" chores
• First Aid, Keyword, Technical appendixes
• Glossary

Item #B021 ISBN 1-55755-021-2. Suggested retail price: $16.95

Companion Diskette not available for this book.

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga BASIC: Inside and Out

Amiga BASIC: Inside and Out is the definitive step-by-step guide to
programming the Amiga in
BASIC. This huge volume
should be within every Amiga
user's reach. Every Amiga
BASIC command is fully
described and detailed. In
addition, Amiga BASIC: Inside
and Out is loaded with real
working programs.

Topics include:

• Video titling for high quality
object animation

• Bar and pie charts
• Windows
• Pull down menus
• Mouse commands
• Statistics
• Sequential and relative files
• Speech and sound synthesis

Item #B87X ISBN 0-916439-87-9. Sugested retail price: $24.95

Companion Diskette available: Contains every program listed in the
book complete, error free and ready to run! Saves you hours of typing in
program listings. Available only from Abacus. Item #S025. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga Machine Language

Amiga Machine Language introduces you to 68000 machine language
programming presented in
clear, easy to understand
terms. If you're a beginner, the
introduction eases you into
programming right away. If
you're an advanced
programmer, you'll discoverthe
hidden powers of your Amiga.
Learn how to access the
hardware registers, use the
Amiga libraries, create
gadgets, work with Intuition and
more.

• 68000 microprocessor
arch itectu re

• 68000 address modes and
instruction set

• Accessing RAM, operating
system and multitasking capabilities

• Details the powerful Amiga libraries for access to AmigaDOS
• Simple number base conversions
• Menu programming explained
• Speech utility for remarkable human voice synthesis
• Complete Intuition demonstration program including

Proportional, Boolean and String gadgets

Item #B025 ISBN 1-55755-025-5. Suggested retail price: $19.95
Companion Diskette available: Contains every program listed in the
book- complete, error free and ready to run! Saves you hours of typing in
program listings. A vailable only from Abacus. Item #B025. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Using ARexx on the Amiga

Using ARexx on the Amiga is the most authoritative guide to using the
popular ARexx programming
language on the Amiga. It's
filled with tutorials, examples,
programming code and a
complete reference section that
you will use over and over
again. Using ARexx on the
Amiga is written for new users
and advanced programmers
of ARexx by noted Amiga
experts Chris Zamara and Nick
Sullivan.

Topics include:

• What is Rexxl ARexx -
a short history

• Thorough overview of all
ARexx commands - with examples

Amiga
Guide to using the ARexx
programming language

by Zamara and Sullivan

• Useful ARexx macros for controlling software and devices

• How to access other Amiga applications with ARexx

• Detailed ARexx programming examples for beginners and
advanced users

• Multi-tasking and inter-program communications

• Companion diskette included

• And much, much more!

Item #B114 ISBN 1-55755-114-6.
Suggested retail price: $34.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

.
AmigaDOS: Inside & Out Revised

AmigaDOS: Inside & Out covers the insides of AmigaDOS, everything
from the internal design to practical applications. AmigaDOS Inside & Out
will show you how to manage
Amiga's multitasking capabilities
more effectively. There is also a
detailed reference section which
helps you find information in a
flash, both alphabetically and in
command groups. Topics include
getting the most from the
AmigaDOS Shell (wildcards and
command abbreviations) script
(batch) files - what they are and
how to write them.

More topics include:

• AmigaDOS - Tasks and
handling

• Detailed explanations of CLI
commands and their functions

• In-depth guide to ED and EDIT

•

& Out
An in-depth guide to
AmigaDOS and the Shell

• Amiga devices and how the AmigaDOS Shell uses them
• Customizing your own startup-sequence
• AmigaDOS and multitasking
• Writing your own AmigaDOS Shell commands in C
• Reference for 1 .2, 1.3 and 2.0 commands
• Companion diskette included

Item #B125 ISBN 1-55755-125-1.
Suggested retail price: $24.95

•

•

II I
Includes

companion
diskette

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga C for Beginners

Amiga C for Beginners is an introduction to learning the popular C
language. Explains the
language elements using
examples specifically geared to
the Amiga. Describes C library
routines, howthecompilerworks
and more.
Topics include:

• Beginner's overview of C
• Particulars of C
• Writing your first program
• The scope of the language

(loops, conditions, functions,
structures)

• Special featu res of the
Clanguage

• Input/Output using C
• Tricks and Tips for
finding errors

• Introduction to direct programming of the operating system (windows,
screens, direct text output, DOS functions)

• Using the LATTICE and AZTEC C compilers

Item #B045 ISBN 1-55755-045-X. Suggested retail price: $19.95

Companion Diskette available: Contains every program listed in the
book- complete, error free and ready to run! Saves you hours of typing in
program listings. Available only from Abacus. Item #5045. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga Graphics: Inside & Out

Amiga Graphics: Inside & Out will show you the super graphic features
and functions of the Amiga in
detail. Learn the graphic
features that can be accessed
from AmigaBASIC or C. The
advanced user will learn how to
call the graphic routines from
the Amiga's built-in graphic
libraries. Learn graphic
programming in C with
examples of points, lines,
rectangles, polygons, colors and
more. Complete description of
theAmigagraphicsystem- View,
ViewPort, RastPort, bitmap
mapping, screens and windows.

Topics include:

• Accessing fonts and type
styles in AmigaBASIC

• Loading and saving IFF graphics
• CAD on a 1024 x 1024 super bitmap, using graphic

library routines
• Access libraries and chips from BASIC- 4096 colors at once,

color patterns, screen and window dumps to printer
• Amiga animation explained including sprites, bobs

and AnimObs, Copper and blitter programming

Item #B052 ISBN 1-55755-052-2. Suggested retail price: $34.95
Companion Diskette available: Contains every program listed in the
book- complete, error free and ready to run! Saves you hours of typing in
program listings. Available only from Abacus. Item #5052. $14.95

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

Amiga Desktop Video Power

Amiga desktop Video Power is the most complete and useful guide to
desktop video on the Amiga.
Amiga Desktop Video Power
covers all the basics- defining
video terms, selecting
genlocks, digitizers, scanners,
VCRs, camera and connecting
them to the Amiga.

Just a few of the topics
described in this excellent
book:

• Now includes DCTV, Video
Toaster info

• The basics of video
• Genlocks
• Digitizers and scanners
• Frame Grabbers/

Frame Buffers

•

Includes
Companion

Diskette

Power
The most thorough guide
to video on your Amiga

• How to connect VCRs, VTRs, and cameras to the Amiga
• Using the Amiga to add or incorporate Special Effects to a video
• Paint, Ray Tracing, and 3D rendering in commercial applications
• Animation
• Video Titling
• Music and videos
• Home videos
• Advanced techniques

r- - ,---

• I
Includes

I~

-

Item #B057 ISBN 1-55755-122-7
Suggested retail price: $29.95

companion
• diskette lof

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

The Best Amiga Tricks & Tips

The Best Amiga Tricks & Tips is a great collection of Workbench, CLI
and BASIC programming "quick­
hitters", hints and application
programs. You'll beabletomake
your programs more user­
friendly with pull-down menus,
sliders and tables. BASIC
programmers will learn all about
gadgets, windows, graphic
fades, HAM mode, 3D graphics
and more.

The Best Amiga Tricks & Tips
includes acomplete listof BASIC
tokens and multitasking input
and a fast and easy print routine.
If you're an advanced
programmer, you'll discover the
hidden powers of your Amiga.

• Using the new AmigaDOS, Workbench and Preferences 1.3
and Release 2.0

• Tips on using the new utilities on Extras 1 .3
• Customizing Kickstart for Amiga 1000 users
• Enhancing BASIC using ColorCycie and mouse sleeper
• Disabling FastRAM and disk drives
• Using the mount command
• Writing an Amiga virus killer program

~ ~ •
• Disk drive operations and disk commands

0
• Learn machine language calls.

I Includ~s

~

Item # B1071SBN 1-55755-107-3.
Suggested retail price $29.95 l·

compamon
diskette

See your local dealer or order TOLL FREE 1-800-451-4319 in US & Canada

